Roots are essential for plant growth and development. Bamboo is a large Poaceae perennial with 1,642 species worldwide. However, little is known about the transcriptional atlas that underpin root cell-type differentiation. Here, we set up a modified protocol for protoplast preparation and reported single-cell transcriptomes of 14,279 filtered single cells derived from the basal root tips of Moso bamboo. We identified four cell types and defined new cell type-specific marker genes for the basal root. We reconstructed the developmental trajectories of the root cap, epidermis, and ground tissues and elucidated critical factors regulating cell fate determination. According to in situ hybridization and pseudotime trajectory analysis, the root cap and epidermis originated from a common initial cell lineage, revealing the particularity of bamboo basal root development. We further identified key regulatory factors for these cells differentiation and indicated divergent root developmental pathways between Moso bamboo and rice. Additionally, PheWOX13a and PheWOX13b ectopically expressed in Arabidopsis inhibited primary root and lateral root growth and regulated the growth and development of root cap, which was different from WOX13 orthologs in Arabidopsis. Taken together, our results offer an important resource for investigating the mechanism of root cell differentiation and root system architecture in perennial woody species of Bambusoideae.
Sucrose (Suc) and gibberellin (GA) can promote the elongation of certain internodes in bamboo. However, there is a lack of field studies to support these findings and no evidence concerning how Suc and GA promote the plant height of bamboo by regulating the internode elongation and number. We investigated the plant height, the length of each internode, and the total number of internodes of Moso bamboo (Phyllostachys edulis) under exogenous Suc, GA, and control group (CTRL) treatments in the field and analyzed how Suc and GA affected the height of Moso bamboo by promoting the internode length and number. The lengths of the 10th–50th internodes were significantly increased under the exogenous Suc and GA treatments, and the number of internodes was significantly increased by the exogenous Suc treatment. The increased effect of Suc and GA exogenous treatment on the proportion of longer internodes showed a weakening trend near the plant height of 15–16 m compared with the CTRL, suggesting that these exogenous treatments may be more effective in regions where bamboo growth is suboptimal. This study demonstrated that both the exogenous Suc and GA treatments could promote internode elongation of Moso bamboo in the field. The exogenous GA treatment had a stronger effect on internode elongation, and the exogenous Suc treatment had a stronger effect on increasing the internode numbers. The increase in plant height by the exogenous Suc and GA treatments was promoted by the co-elongation of most internodes or the increase in the proportion of longer internodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.