Cell detachment techniques using animal-derived enzymes are necessary for the production of biopharmaceuticals that are made with the help of adherent cell cultures, although the majority of protein therapeutics (>USD 100 billion of income per year) are made under suspension cultures that do not require animal-derived proteins for manufacture. In this study, we establish the optimal Vero cell detachment process, and analyze physiological changes during cell detachment at the cellular and molecular levels. Using flow cytometry, we find that animal-based enzymes are more likely to induce apoptosis than animal-origin-free enzymes. We analyze the levels of RNAs, proteins, and metabolites in cells treated with two detachment strategies, and identify 1237 differentially expressed genes, 2883 differential proteins, and 210 differential metabolites. Transcriptomic analysis shows that animal-origin-free enzymes have a less significant effect on gene expression levels. Combined with proteomic analysis, animal-based enzymes affect the oxidative phosphorylation process and reduce the mRNA and protein levels of Cytochrome C Oxidase Assembly Protein 17 (COX17), which is a Cytochrome C Oxidase Copper Chaperone involved in the mitochondrial respiratory chain. Metabolomics analysis indicates that the levels of spermine and spermidine, which are involved in the glutathione metabolism pathway and apoptosis inhibition, are significantly reduced. Therefore, COX17, spermine, and spermidine may be biomarkers for evaluating the cell subculture process. In conclusion, we have deeply characterized the cell subculture process through multi-omics, which may provide important guidance for research and process evaluation to optimize cell detachment processes.
The DTacP-sIPV-Hib combination vaccine can replace the single-component acellular pertussis, diphtheria, tetanus, polio, and Haemophilus influenzae type B vaccines. In this study, we evaluated the safety and immunogenicity of a newly developed DTacP-sIPV-Hib combination vaccine in animal models. We used 40 mice and 46 cynomolgus monkeys to evaluate acute and long-term toxicity. Thirty-six guinea pigs were used for sensitization assessment. For immunogenicity assessment, 50 NIH mice and 50 rats were equally randomized to receive 3 doses of 3 different batches of the tested vaccine at an interval of 21 d, or physiological saline solution (0.5 mL). Orbital blood was collected at an interval of 21 d post inoculation to detect related antibody titers or neutralizing antibody titers against poliovirus. Gross autopsy and histopathological examination revealed no abnormal toxicity or irritation in mice and cynomolgus monkeys. Sensitization assessment in guinea pigs indicated the lack of evident allergic symptoms in the high- and low-dose vaccine groups within 30 min after repeated stimulation. The DTacP-sIPV-Hib combination vaccine induced significant immune responses in mice, rats, and cynomolgus monkeys, with 100% seroconversion rates after 3 doses. The DTacP-sIPV-Hib combination vaccine is safe and immunogenic in animal models. Three doses of the vaccine elicited satisfactory antibody responses in mice, rats, and cynomolgus monkeys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.