To determine the effects of plant density and row spacing on the mechanical harvesting of rapeseed (Brassica napus L.), field experiments were conducted. Higher plant density produced fewer pods and reduced the yield per plant. Wider row spacing at higher plant densities increased seeds per pod and the 1000-seed weight, resulting in a higher yield per plant. The highest yields were achieved at a density of 45 × 104 plants ha−1 (D45) in combination with 15 cm row spacing (R15) because mortality associated with competition increased as both the plant density and row spacing increased. The leaf area index (LAI) and pod area index (PAI) showed similar relations to the yield per hectare, and they were positively correlated with the percentage of intercepted light, whereas the radiation use efficiency (RUE) was positively correlated with population biomass. Reduced plant height and increased root/shoot ratios led to a decreased culm lodging index. Improved resistance to pod shattering was also observed as plant density and row spacing increased. The angle of the lowest 5 branches decreased as row spacing increased under D30 and D45. All of these structural changes influenced the mechanical harvesting operations, resulting in the highest yield of mechanically harvesting rapeseed under D45R15.
In rape combine harvester, side cutter must be equipped to cut off tangled rapeseed twigs. Inappropriate cutting speed would increase the repeated cutting and missing cutting of side cutter, which lead to serious header loss. In allusion to the problems mentioned above, bidirectional electric drive side cutter and a cutting speed follow-up adjusting system were proposed. The kinematic law of side cutter blades was analyzed. The trajectory, velocity, and acceleration of the two blades were the same, but the phase difference is π. Numerical simulation of cutting areas at different cutting speed ratios was carried out and the best cutting speed ratio was determined to be 1.1. Cutting speed follow-up adjusting system was designed based on matching relationship between combine harvester forward speed and side cutter cutting speed. Cutting speed follow-up adjusting system was designed with proportional–integral–derivative (PID) algorithm. The control parameters were determined to be Kp = 1.3, Ki = 4.3, Kd = 0.007. Simulation showed that the maximum overshoot of the system was 4.3%, steady-state error was 0.24%, and the rise time was 0.036 s. The cutting speed follow-up adjusting system was applied to the 4LZ-6T-type rape combine harvester. Experimental results showed that the side cutter cutting speed error was within 1.5%. When forward speed changed, the cutting speed response delay time was 1.5 s. The rape combine harvester header average loss was 2.96% and side cutter average loss was 0.81%. Compared to the fixed speed cutting, header loss was reduced by 14.05% and side cutter loss was reduced by 34.76%. The research can reduce the loss of rapeseed combine harvester and provide theoretical basis for the design of rapeseed combine harvester.
The desirable sowing period for winter wheat is very short in the rice-wheat rotation areas. There are also lots of straw left in harvested land. Deep rotary tillage can cover rice straw under the surface to increase soil organic matter. Clarifying the effect of the rotary tillage blade on the soil and straw, as well as analyzing the movement patterns and forces on the straw and soil, are essential to investigate the deep rotary tillage process in order to solve the problems of energy consumption and poor straw burial effect of deep tillage and deep burial machinery. In this study, we built the interaction model of rotary blade-soil-straw through the discrete element method to conduct simulation and identified the factors that affect the power consumption and operation quality of the rotary blade. The simulation process reflects the law of rotary blade-soil-straw interaction, and the accuracy of the simulation model has been verified by field trials. The simulation test results show that the optimized structural parameters of the rotary tillage blade were 210 mm, 45 mm, 37° and 115° (R, H, α and β) designed based on this theoretical model can cultivate to a depth of 200 mm. The operating parameters were 8π rad/s for rotational speed and 0. 56 m/s for forward speed, respectively; the simulated and field comparison tests were conducted under the optimal combination of parameters, and the power, soil breaking rate, and straw burial rate were 1.73 kW, 71.34%, and 18.89%, respectively; the numerical error rates of simulated and field test values were 6.36%, 5.42%, and 8.89%, respectively. The accuracy of the secondary model was verified. The simulation model had good accuracy at all factor levels. The model constructed in this study can provide a theoretical basis and technical reference for the interaction mechanism between rotary tillage and soil straw, the optimization of machine geometry, and the selection of operating parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.