The influences of 4 wt% bismuth addition and room temperature strain on microstructure and mechanical properties in tin alloys were investigated in this study. Commercially pure tin and Sn-4%Bi alloys were fabricated by permanent mold gravity casting. The samples were then subjected to forging process at room temperature. As-cast microstructures were compared with 0.25 and 0.5 strained samples. Differential Scanning Calorimetry (DSC) was used to confirm the effect of bismuth on undercooling. The recrystallization and grain growth processes were confirmed by grain size distribution and misorientation study using Electron Backscattered Diffraction (EBSD). Furthermore, position and morphology of the bismuth precipitates were investigated by using Field Emission Scanning Electron Microscope (FESEM). X-ray Photoelectron Spectroscopy (XPS) revealed that tin oxide was the main species found on the surface of these alloys. There was no evidence of bismuth oxide on the surface. Furthermore, the Hall-Petch hardness approximation analysis revealed that there were other influences, which increased the hardness beyond the grain refinement effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.