Background: VRK1 phosphorylates mitotic histone H3 at Thr-3 and Ser-10, but its negative regulator was not elucidated during interphase. Results: The macrodomain of macroH2A1 interacts with VRK1, and this suppresses enzymatic activity of VRK1 during interphase. Conclusion: Specific binding between VRK1 and macroH2A1 is required to regulate the cell cycle-dependent histone H3 phosphorylation. Significance: Understanding epigenetic regulation of histone H3 during the cell cycle is important in cancer development.
Phosphorylation of histone H3 on Ser-10 is regarded as an epigenetic mitotic marker and is tightly correlated with chromosome condensation during both mitosis and meiosis. However, it was also reported that histone H3 Ser-10 phosphorylation occurs when cells are exposed to various death stimuli, suggesting a potential role in the regulation of apoptosis. Here we report that histone H3 Ser-10 phosphorylation is mediated by the pro-apoptotic kinase protein kinase C (PKC) δ during apoptosis. We observed that PKCδ robustly phosphorylates histone H3 on Ser-10 both in vitro and in vivo. Ectopic expression of catalytically active PKCδ efficiently induces condensed chromatin structure in the nucleus. We also discovered that activation of PKCδ is required for histone H3 Ser-10 phosphorylation after treatment with DNA damaging agents during apoptosis. Collectively, these findings suggest that PKCδ is the kinase responsible for histone H3 Ser-10 phosphoryation during apoptosis and thus contributes to chromatin condensation together with other apoptosis-related histone modifications. As a result, histone H3 Ser-10 phosphorylation can be designated a new ‘apoptotic histone code’ mediated by PKCδ.
Vaccinia-related kinase 1 (VRK1) is a crucial protein kinase for mitotic regulation. VRK1 is known to play a role in germ cell development, and its deficiency results in sterility. Here we describe that VRK1 is essential for the maintenance of spermatogonial stem cells. To determine whether VRK1 plays a role in these cells, we assessed the population size of undifferentiated spermatogonia. Flow cytometry analyses showed that the number of undifferentiated spermatogonia was markedly reduced in VRK1-deficient testes. VRK1 was highly expressed in spermatogonial populations, and approximately 66% of undifferentiated spermatogonia that were sorted as an Ep-CAM+/c-kit−/alpha-6-integrin+ population showed a positive signal for VRK1. Undifferentiated stem cells expressing Plzf and Oct4 but not c-kit also expressed VRK1, suggesting that VRK1 is an intrinsic factor for the maintenance of spermatogonial stem cells. Microarray analyses of the global testicular transcriptome and quantitative RT-PCR of VRK1-deficient testes revealed significantly reduced expression levels of undifferentiated spermatogonial marker genes in early postnatal mice. Together, these results suggest that VRK1 is required for the proliferation and differentiation of undifferentiated spermatogonia, which are essential for spermatogenic cell maintenance.
Vaccinia-related kinase 3 (VRK3) is known as a pseudokinase that is catalytically inactive due to changes in motifs that are essential for kinase activity. Although VRK3 has been regarded as a genuine pseudokinase from structural and biochemical studies, recent reports suggest that VRK3 acts as an active kinase as well as a signaling scaffold in cells. Here, we demonstrate that VRK3 phosphorylates the nuclear envelope protein barrier-to-autointegration factor (BAF) on Ser4. Interestingly, VRK3 kinase activity is dependent upon its N-terminal regulatory region, which is excluded from the determination of its crystal structure. Furthermore, the kinase activity of VRK3 is involved in the regulation of the cell cycle. VRK3 expression levels increase during interphase, whereas VRK1 is enriched in late G2 and early M phase. Ectopic expression of VRK3 induces the translocation of BAF from the nucleus to the cytoplasm. In addition, depletion of VRK3 decreases the population of proliferating cells. These data suggest that VRK3-mediated phosphorylation of BAF may facilitate DNA replication or gene expression by facilitating the dissociation of nuclear envelope proteins and chromatin during interphase.
Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer’s disease (AD) and Parkinson’s disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.