Fatty acid methyl esters (FAMEs) show large potential applications as diesel substitutes, also known as biodiesel fuel. Biodiesel fuel as renewable energy is an alternative that can reduce energy dependence on petroleum as well as air pollution. Several processes for the production of biodiesel fuel have been developed. Transesterification processes under alkali catalysis with short-chain alcohols give high yields of methyl esters in short reaction times. We investigated transesterification of rapeseed oil to produce the FAMEs. Experimental reaction conditions were molar ratio of oil to alcohol, concentration of catalyst, type of catalyst, reaction time, and temperature. The conversion ratio of rapeseed oil was enhanced by the alcohol:oil mixing ratio and the reaction temperature.
In this work, the effects of crystalline structure of the TiO2, which is incorporated in fabrication of the n-type electrode, on the DSSC performance were investigated in terms of the energy conversion efficiency. In this effort, TiO2 nanoparticle pastes with varying contents of rutile and anatase structures were prepared by using the ethanol mixing method. The most efficient photo-electro-chemical performance was achieved for the DSSC fabricated with the TiO2 paste in which the anatase form of the nanocrystal extends to 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.