In this paper, the problem of proactive deployment of cache-enabled unmanned aerial vehicles (UAVs) for optimizing the quality-of-experience (QoE) of wireless devices in a cloud radio access network (CRAN) is studied. In the considered model, the network can leverage human-centric information such as users' visited locations, requested contents, gender, job, and device type to predict the content request distribution and mobility pattern of each user. Then, given these behavior predictions, the proposed approach seeks to find the user-UAV associations, the optimal UAVs' locations, and the contents to cache at UAVs. This problem is formulated as an optimization problem whose goal is to maximize the users' QoE while minimizing the transmit power used by the UAVs. To solve this problem, a novel algorithm based on the machine learning framework of conceptor-based echo state networks (ESNs) is proposed. Using ESNs, the network can effectively predict each user's content request distribution and its mobility pattern when limited information on the states of users and the network is available. Based on the predictions of the users' content request distribution and their mobility patterns, we derive the optimal user-UAV association, optimal locations of the UAVs as well as the content to cache at UAVs. Simulation results using real pedestrian mobility patterns from BUPT and actual content transmission data from Youku show that the proposed algorithm can yield 40% and 61% gains, respectively, in terms of the average transmit power and the percentage of the users with satisfied QoE compared to a benchmark algorithm without caching and a benchmark solution without UAVs.
In this paper, a communication-efficient federated learning (FL) framework is proposed for improving the convergence rate of FL under a limited uplink capacity. The central idea of the proposed framework is to transmit the values and positions of the top-S entries of a local model update for uplink transmission. A lossless encoding technique is considered for transmitting the positions of these entries, while a linear transformation followed by the Lloyd-Max scalar quantization is considered for transmitting their values. For an accurate reconstruction of the top-S values, a linear minimum mean squared error method is developed based on the Bussgang decomposition. Moreover, an error feedback strategy is introduced to compensate for both compression and reconstruction errors. The convergence rate of the proposed framework is analyzed for a non-convex loss function with consideration of the compression and reconstruction errors. From the analytical result, the key parameters of the proposed framework are optimized for maximizing the convergence rate for the given capacity. Simulation results on the MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms state-ofthe-art FL frameworks in terms of classification accuracy under the limited uplink capacity.
Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.