We developed a simple method to prepare the displacement damage cross section of SiC using NJOY and SRIM/TRIM. The number of displacements per atom (DPA) dependent on primary knock-on atom (PKA) energy was computed using SRIM/TRIM and it is directly used by NJOY/HEATR to compute the neutron energy dependent DPA cross sections which are required to estimate the accumulated DPA of nuclear material. SiC DPA cross section is published as a table in DeCART 47 energy group structure. Proposed methodology can be easily extended to other materials.
In order to validate the detailed sensitivity of each minor actinide datum in ENDF/B-VI Release 6, JEF-2.2 and JENDL-3.2 on an accelerator-driven minor actinide burner benchmark system, a lead-bismuth cooled sub-critical system was analyzed. The impacts on the system by the ten minor actinides were compared. The kefJ values and reaction rates were calculated by exchanging the data sets of each minor actinide from ENDF/B-VI.6 to JEF-2.2 or JENDL-3.2. At the equilibrium core, the kefJ differences from ENDF/B-VI.6 by the ten minor actinides can cause more than 5,500 pcm for JEF-2.2 and 3,500 pcm for JENDL-3.2. The fission reaction rates of 242mAm and 243Cm with ENDF/B-VI.6 show differences of more than 15% from those with JEF-2.2 and JENDL-3.2. 241 Am, 243 Am and 245Cm in JEF-2.2 and americium isotope data and 245Cm in JENDL-3.2 are sensitive to the fission spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.