Layer-by-layer (LbL) assemblies are remarkable materials, known for their tunable mechanical, optical, and surface properties in nanoscale films. However, questions related to their thermal properties still remain unclear. Here, the thermal properties of a model LbL assembly of strong polyelectrolytes, poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/PSS), assembled from solutions of varying ionic strength (0-1.25 M NaCl) are investigated using quartz crystal microbalance with dissipation (QCM-D) and modulated differential scanning calorimetry. Hydrated exponentially growing films (assembled from 0.25 to 1.25 M NaCl) exhibited distinct thermal transitions akin to a glass transition at 49-56 °C; linearly growing films (assembled without added salt) did not exhibit a transition in the temperature range investigated and were glassy. Results support the idea that exponentially growing films have greater segmental mobility than that of linearly growing films. On the other hand, all dry LbL assemblies investigated were glassy at room temperature and did not exhibit a T(g) up to 250 °C, independent of ionic strength. For the first time, thermal transitions such as T(g) values can be measured for LbL assemblies using QCM-D by monitoring fluctuations in changes in dissipation, allowing us to probe the film's internal structure as a function of film depth.
Layer-by-layer (LbL) assemblies have remarkable potential
as advanced
functional materials with applications in energy and biomedical related
areas. However, very little is known about their thermal and viscoelastic
properties owing to the inherent difficulty in their accurate measurement.
Here we report on the thermal behavior of a model LbL system containing
weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(acrylic
acid) (PAA) as a function of assembly solution pH. Quartz crystal
microbalance with dissipation (QCM-D) and modulated differential scanning
calorimetry (DSC) indicate that hydrated PAH/PAA LbL assemblies undergo
a thermal transition that is akin to a glass transition for most assembly
pH’s investigated, with the exception being the case where
both polyelectrolytes are fully charged. The nonmonotonic dependence
of the glass transition temperature of the PAH/PAA LbL system with
respect to assembly pH is discussed in relation to the film’s
hydration, composition, film-growth mechanism (linear vs exponential),
and ion-pairing density.
Layer-by-layer (LbL) assemblies have attracted much attention for their functional versatility and ease of fabrication. However, characterizing their thermal properties in relation to the film thickness has remained a challenging topic. We have investigated the role of film thickness on the glass transition temperature (T(g)) and coeffecient of thermal expansion for poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) and PEO/poly(methacrylic acid) (PEO/PMAA) hydrogen-bonded LbL assemblies in both bulk and ultrathin films using modulated differential scanning calorimetry (modulated DSC) and temperature-controlled ellipsometry. In PEO/PAA LbL films, a single, well-defined T(g) was observed regardless of film thickness. The T(g) increased by 9 °C relative to the bulk T(g) as film thickness decreased to 30 nm because of interactions between the film and its substrate. In contrast, PEO/PMAA LbL films show a single glass transition only after a thermal cross-linking step, which results in anhydride bonds between PMAA groups. The T(g), within error, was unaffected by film thickness, but PEO/PMAA LbL films of thicknesses below ~2.7 μm exhibited a small amount of PEO crystallization and phase separation for the thermally cross-linked films. The coefficients of thermal expansion of both types of film increased with decreasing film thickness.
Freely released microtubes in water transform to ellipsoids and spheres at high temperatures, while microtubes bound to the template surface showed periodic voids suggestive of Rayleigh instabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.