Verapamil is the first-line preventive medication for cluster headache, an excruciating disorder with strong circadian features. Whereas second-and third-line preventives include known circadian modulators, such as melatonin, corticosteroids, and lithium, the circadian effects of verapamil are poorly understood. Here, we characterize the circadian features of verapamil using both in vitro and in vivo models. In Per2::LucSV reporter fibroblasts, treatment with verapamil (0.03-10 µM) showed a dose-dependent period shortening of the reporter rhythm which reached a nadir at 1 µM, and altered core clock gene expression at 10 µM. Mouse wheel-running activity with verapamil (1 mg/mL added to the drinking water) also resulted in significant period shortening and activity reduction in both male and female free-running wild-type C57BL6/J mice. The temporal patterns of activity reduction, however, differ between the two sexes. Importantly, piezo sleep recording revealed sexual dimorphism in the effects of verapamil on sleep timing and bout duration, with more pronounced adverse effects in female mice. We also found altered circadian clock gene expression in the cerebellum, hypothalamus, and trigeminal ganglion of verapamil-treated mice. Verapamil did not affect reporter rhythms in ex vivo suprachiasmatic nucleus (SCN) slices from Per2:Luc reporter mice, perhaps due to the exceptionally tight coupling in the SCN. Thus, verapamil affects both peripheral (trigeminal ganglion) and central (hypothalamus and cerebellum) nervous system structures involved in cluster headache pathophysiology, possibly with network effects instead of isolated SCN effects. These studies suggest that verapamil is a circadian modulator in laboratory models at both molecular and behavioral levels, and sex is an important biological variable for cluster headache medications. These observations highlight the circadian system as a potential convergent target for cluster headache medications with different primary mechanisms of action.
Background and objectives:Cluster headache and migraine have circadian features at multiple levels (cellular, systems, and behavioral). A thorough understanding of their circadian features informs their pathophysiologies.Methods:A librarian created search criteria in Medline Ovid, Embase, PsycINFO, Web of Science, and Cochrane Library. Two physicians independently performed the remainder of the systematic review/meta-analysis using PRISMA guidelines. Separate from the systematic review/meta-analysis we performed a genetic analysis for genes with a circadian pattern of expression (Clock Controlled Genes or CCGs) by cross-referencing genome-wide association studies (GWAS) of headache, a non-human primate study of CCGs in a variety of tissues, and recent reviews of brain areas relevant in headache disorders. Altogether, this allowed us to catalog circadian features at the behavioral level (circadian timing, time of day, time of year, and chronotype), systems level (relevant brain areas where CCGs are active, melatonin and corticosteroid levels), and cellular level (core circadian genes and CCGs).Results:For the systematic review and meta-analysis, 1513 studies were found and 72 met inclusion criteria; for the genetic analysis we found 16 GWAS, 1 non-human primate study, and 16 imaging reviews.Cluster headache:Behaviorally, meta-analyses showed a circadian pattern of attacks in 70.5% (3490/4953) of participants across 16 studies, with a clear circadian peak between 21:00-03:00 and circannual peaks in spring and autumn. Chronotype was highly variable across studies. At the systems level, lower melatonin and higher cortisol levels were reported. At the cellular level, cluster headache was associated with core circadian genesCLOCKandREV-ERBα, and five of the nine cluster headache susceptibility genes were CCGs.Migraine:Behaviorally, meta-analyses showed a circadian pattern of attacks in 50.1% (2698/5385) of participants across eight studies, with a clear circadian trough between 23:00-07:00 and a broad circannual peak between April-October. Chronotype was highly variable across studies. At the systems level, urinary melatonin levels were lower in migraine participants and even lower during an attack. At the cellular level, migraine was associated with core circadian genesCK1δandRORα, and 110 of the 168 migraine susceptibility genes were CCGs.Discussion:Cluster headache and migraine are highly circadian at multiple levels, reinforcing the importance of the hypothalamus. This review provides a pathophysiological foundation for circadian-targeted research into these disorders.Trial Registration Information:The study was registered with PROSPERO (registration number CRD42021234238).
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease‐modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock‐enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB‐containing diets. NOB significantly alleviated β‐amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel‐running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock‐controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time‐dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis‐associated neuroinflammation.
Dysregulated circadian functions contribute to various diseases, including cardiovascular disease. Much progress has been made on chronotherapeutic applications of drugs against cardiovascular disease (CVD); however, the direct effects of various medications on the circadian system are not well characterized. We previously conducted high-throughput chemical screening for clock modulators and identified an off-patent anti-arrhythmic drug, moricizine, as a clock-period lengthening compound. In Per2:LucSV reporter fibroblast cells, we showed that under both dexamethasone and forskolin synchronization, moricizine was able to increase the circadian period length, with greater effects seen with the former. Titration studies revealed a dose-dependent effect of moricizine to lengthen the period. In contrast, flecainide, another Class I anti-arrhythmic, showed no effects on circadian reporter rhythms. Real-time qPCR analysis in fibroblast cells treated with moricizine revealed significant circadian time- and/or treatment-dependent expression changes in core clock genes, consistent with the above period-lengthening effects. Several clock-controlled cardiac channel genes also displayed altered expression patterns. Using tissue explant culture, we showed that moricizine was able to significantly prolong the period length of circadian reporter rhythms in atrial ex vivo cultures. Using wild-type C57BL/6J mice, moricizine treatment was found to promote sleep, alter circadian gene expression in the heart, and show a slight trend of increasing free-running periods. Together, these observations demonstrate novel clock-modulating activities of moricizine, particularly the period-lengthening effects on cellular oscillators, which may have clinical relevance against heart diseases.
Numerous molecular and physiological processes in the skeletal muscle undergo circadian time-dependent oscillations in accordance with daily activity/rest cycles. The circadian regulatory mechanisms underlying these cyclic processes, especially at the post-transcriptional level, are not well defined. Previously, we reported that the circadian E3 ligase FBXL21 mediates rhythmic degradation of the sarcomere protein TCAP in conjunction with GSK-3β, and Psttm mice harboring an Fbxl21 hypomorph allele show reduced muscle fiber diameter and impaired muscle function. To further elucidate the regulatory function of FBXL21 in skeletal muscle, we investigated another sarcomere protein, Myozenin1 (MYOZ1), that we identified as an FBXL21-binding protein from yeast 2-hybrid screening. We show that FBXL21 binding to MYOZ1 led to ubiquitination-mediated proteasomal degradation. GSK-3β co-expression and inhibition were found to accelerate and decelerate FBXL21-mediated MYOZ1 degradation, respectively. Previously, MYOZ1 has been shown to inhibit calcineurin/NFAT signaling important for muscle differentiation. In accordance, Fbxl21 KO and MyoZ1 KO in C2C12 cells impaired and enhanced myogenic differentiation respectively compared with control C2C12 cells, concomitant with distinct effects on NFAT nuclear localization and NFAT target gene expression. Importantly, in Psttm mice, both the levels and diurnal rhythm of NFAT2 nuclear localization were significantly diminished relative to wild-type mice, and circadian expression of NFAT target genes associated with muscle differentiation was also markedly dampened. Furthermore, Psttm mice exhibited significant disruption of sarcomere structure with a considerable excess of MYOZ1 accumulation in the Z-line. Taken together, our study illustrates a pivotal role of FBXL21 in sarcomere structure and muscle differentiation by regulating MYOZ1 degradation and NFAT2 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.