This research aims to study the relationship between parallel processing efficiency and several nodes on a single board cluster using a mathematical model, approximating least squares. This research tested on the Raspberry Pi single-board in the form of a high-performance computing system. It divided the tasks that need to be processed in each particular part and sent it to each unit to process simultaneously via the MPI (Messaging Passing Interface). This process is the standard division of work with communication between processors in the form of messages on the cluster system. It consists of eight nodes of Raspberry Pi. It measures the instruction set's ability to perform decimal operations per second or Floating-point Operation Per Second (FLOPS) with High-Performance Linpack Benchmarks (HPL). As a result, the efficiency of the ability to process instruction set in decimal per second increases the performance continuously when increasing the number of the node on the cluster. Which corresponds to the mathematical model obtained f(x) = 1.0684x^(0.8256).It shows a relationship between parallel processing performance values and the number of nodes on the cluster and can be estimated with the mathematical model above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.