The photoelectrochemical properties of a p-type silicon (100) electrode coated with tungsten oxide thin film were investigated as a function of annealing temperature. The variation in the annealing temperature affected the photocurrent of a WO3/p-Si electrode. A maximum photocurrent was obtained when the 500 Å WO3 thin film coated p-Si electrode was annealed at 350 °C for 1 h. A further increase in the annealing temperature and film thickness degraded the photocurrent. This can be explained in terms of electrical resistivity, carrier concentration, and depletion layer width. A WO3 thin film deposition on the p-Si shifted the flatband potential of the p-Si electrode by 0.3 V in the anodic direction, resulting in an improvement in conversion efficiency. These results are supported by x-ray diffraction, Auger electron spectroscopy, and capacitance measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.