The nucleoside antibiotic, toyocamycin (TM) exhibits excellent potent activity against several phytopathogenic fungi. Despite its importance, little is known about key factors regulating TM biosynthesis and morphological differentiation in Streptomyces diastatochromogenes 1628. Based on proteomics data obtained from the analysis between wild‐type (WT) S. diastatochromogenes 1628 strain and mutant strain 1628‐T62 having a low yield of TM, we observed that the differentially expressed protein, X0P338, which was proposed to be a regulator of the GntR‐family, exhibited a higher expression level in S. diastatochromogenes 1628. Therefore, in this study, to explore whether protein X0P338 was involved in morphological differentiation and biosynthesis of secondary metabolites, especially TM, the gene called the gntRsd‐encoding protein X0P338 was cloned and overexpressed in WT strain 1628 and mutant strain 1628‐T62, respectively. The results indicated that the overexpression of gntRsd enhanced TM production in both strain 1628 (120.6 mg/L vs. 306.6 mg/L) and strain 1628‐T62 (15.6 mg/L vs. 258.9 mg/L). Besides, the overexpression of gntRsd had positive and negative effects on morphological differentiation in strain 1628 and strain 1628‐T62, respectively. The results also showed opposite effects on tetraene macrolide production during the overexpression of gntRsd in strain 1628 and strain 1628‐T62. Moreover, transcription levels of genes involved in morphological differentiation and secondary metabolites production were affected by the overexpression of gntRsd gene, both in strain 1628 and strain 1628‐T62. These results confirm that X0P338 as a GntR‐type pleiotropic regulator that regulates the morphological differentiation and biosynthesis of secondary metabolites, and especially has a positive effect on TM biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.