Streptococcus mutans ( S. mutans) is a Gram-positive human pathogen that is one of the major contributors to dental caries, a condition with an economic cost of over $100 billion per year in the United States. S. mutans secretes a 21-amino-acid peptide termed the competence stimulating peptide (21-CSP) to assess its population density in a process termed quorum sensing (QS) and to initiate a variety of phenotypes such as biofilm formation and bacteriocin production. 21-CSP is processed by a membrane bound protease SepM into active 18-CSP, which then binds to the ComD receptor. This study seeks to determine the molecular mechanism that ties 21-CSP:SepM recognition and 18-CSP:ComD receptor binding and to identify QS modulators with distinct activity profiles. To this end, we conducted systematic replacement of the amino acid residues in both 21-CSP and 18-CSP and assessed the ability of the mutated analogs to modulate QS. We identified residues that are important to SepM recognition and ComD receptor binding. Our results shed light on the S. mutans competence QS pathway at the molecular level. Moreover, our structural insights of the CSP signal can be used to design QS-based anti-infective therapeutics against S. mutans.
The
dental cariogenic pathogen Streptococcus mutans coordinates
competence for genetic transformation via two peptide
pheromones, competence stimulating peptide (CSP) and comX-inducing peptide (XIP). CSP is sensed by the comCDE system and induces
competence indirectly, whereas XIP is sensed by the comRS system and
induces competence directly. In chemically defined media (CDM), after
uptake by oligopeptide permease, XIP interacts with the cytosolic
receptor ComR to form the XIP::ComR complex that activates the expression
of comX, an alternative sigma factor that initiates
the transcription of late-competence genes. In this study, we set
out to determine the molecular mechanism of XIP::ComR interaction.
To this end, we performed systematic replacement of the amino acid
residues in the XIP pheromone and assessed the ability of the mutated
analogs to modulate the competence regulon in CDM. We were able to
identify structural features that are important to ComR binding and
activation. Our structure–activity relationship insights led
us to construct multiple XIP-based inhibitors of the comRS pathway.
Furthermore, when comCDE and comRS were both stimulated with CSP and
XIP, respectively, a lead XIP-based inhibitor was able to maintain
the inhibitory activity. Last, phenotypic assays were used to highlight
the potential of XIP-based inhibitors to attenuate pathogenicity in S. mutans and to validate the specificity of these compounds
to the comRS pathway within the competence regulon. The XIP-based
inhibitors developed in this study can be used as lead scaffolds for
the design and development of potential therapeutics against S. mutans infections.
Quorum sensing (QS) controls the pathogenic behavior of Streptococcus mutans, a primary cause of dental caries. S. mutans uses the competence stimulating peptide (CSP) to control mutacin production, a bacteriocin utilized by S. mutans to outcompete different commensal bacteria in mixed biofilm environments. In this study, we performed an N-methyl scan of an 18-CSP-based scaffold lacking the first two amino acid residues that were shown to be dispensable, to gain important mechanistic insight as to the role of backbone amide protons in the interaction between CSP and the ComD receptor. We then utilized the reverse alanine approach to develop CSP-based analogs with enhanced activities. The two most potent analogs were found to induce bacteriocin production at sub-nanomolar concentration using an interspecies inhibition assay. Overall, our analysis revealed that the 18-CSP sequence is not optimized and can be improved by replacement of multiple positions with alanine. Our results further suggest that the hydrophobic residues in S. mutans 18-CSP are involved in both receptor binding and activation.
Adsorptive removal of remazol red R (RRR) and remazol black B (RBB) from aqueous solution has been investigated by using ZnO as an adsorbent. Time for adsorption equilibrium, kinetics of adsorption at different initial concentrations of dyes and adsorption isotherms at different temperatures have been studied. Adsorption capacity increased with increasing initial dye concentration. The pseudo first-order and pseudo second-order kinetics were used to describe kinetic data and the rate constants were evaluated. Experimental data fits better in the pseudo second-order kinetic model than in the pseudo first-order kinetic model for both the dyes. Langmuir and Freundlich isotherm models were applied to describe the adsorption of RRR and RBB onto ZnO powders. Langmuir isotherm model provided a better correlation for the experimental data in comparison to the Freundlich isotherm model. Adsorption of both RRR and RBB on ZnO are physical in nature and increases with decreasing temperature. The equilibrium adsorption capacity decreases from 3.43 mg/g at 200C to 2.36 mg/g at 400C for RRR whereas that in the case of RBB changes from 0.77 mg/g at 300C to 0.75 mg/g at 400C. Adsorption of RRR on ZnO was found to be three times higher than the adsorption of RBB at a particular temperature. A model for adsorption of both the dyes has been proposed.
Dhaka Univ. J. Sci. 66(2): 121-127, 2018 (July)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.