Composite systems are a generally-accepted method for repairing corroded and mechanically-damaged onshore pipelines. The pipeline industry has arrived at this point after more than 15 years of research and investigation. Because the primary method of loading for onshore pipelines is in the circumferential direction due to internal pressure, most composite systems have been designed and developed to provide hoop strength reinforcement. On the other hand, offshore pipes (especially risers), unlike onshore pipelines, can experience significant tension and bending loads. As a result, there is a need to evaluate the current state of the art in terms of assessing the use of composite materials in repairing offshore pipelines and risers. The significance of the body of work presented herein is that this study is the first comprehensive evaluation of a composite repair system designed for the repair of offshore risers using a strain-based design method coupled with full-scale prototype testing. This paper presents findings conducted as part of a joint industry effort involving the Minerals Management Service, the Offshore Technology Research Center at Texas A&M University, Stress Engineering Services, Inc., and several composite repair manufacturers to assess the state of the art using finite element methods and full-scale testing methods. Representative loads for offshore risers were used in the test program that integrated internal pressure, tension, and bending loads. This program is the first of its kind and likely to contribute significantly to the future of offshore riser repairs. The end result of this study was the development of a carbon-fiber repair system that can be easily deployed to provide significant reinforcement for repairing risers. It is anticipated that the findings of this program will foster future investigations involving operators by integrating their insights regarding the need for composite repair based on emerging technology.
Composite systems are a generally-accepted method for repairing corroded and mechanically-damaged onshore pipelines. The pipeline industry has arrived at this point after more than 15 years of research and investigation. Because the primary method of loading for onshore pipelines is in the circumferential direction due to internal pressure, most composite systems have been designed and developed to provide hoop strength reinforcement. On the other hand, offshore pipes (especially risers), unlike onshore pipelines, can experience significant tension and bending loads. As a result, there is a need to evaluate the current state of the art in terms of assessing the use of composite materials in repairing offshore pipelines and risers.The paper presents findings from a joint industry effort involving the Minerals Management Service, the Offshore Technology Research Center at Texas A&M University, Stress Engineering Services, Inc., and several composite repair manufacturers was undertaken to assess the state of the art using full-scale testing methods. Loads typical for offshore risers were used in the test program that integrated internal pressure, tension, and bending loads. This program is the first of its kind and likely to contribute significantly to the future of offshore riser repairs. It is anticipated that the findings of this program will foster future investigations involving operators by integrating their insights regarding the need for composite repair based on emerging technology. PROGRAM OVERVIEWThe program incorporated 8.625-inch x 0.406-inch, Grade X46 pipe test samples that were prepared with simulated corrosion by machining. The program destructively tested a total of 12 separate samples with three being repaired by each of the four manufacturers. The tests included a burst test (increasing pressure to failure), a tension-to-failure test (pressure held constant with increasing axial tension loads to failure), and a four-point bend test (pressure and tension held constant with increasing bending loads to achieve significant yielding in steel pipe) for each of the repair systems.The four-team Joint Industry Project (JIP) was formed to assess the current state of the art. Each repair system was evaluated considering a combination of pressure, tension, and bending loads. To maintain anonymity, each company's product was assigned a letter reference designation as noted below.
For the past decade there has been relatively wide acceptance in using composite materials to repair damaged gas and liquid transmission pipelines. There have been numerous independent research programs performed by pipeline companies, research organizations, and manufacturers that have contributed to the acceptance of composites as a legitimate repair material. Additionally, insights have been gained by both pipeline operators and composite repair manufacturers during field installations. ASME has also responded by adding sections to both the ASME B31.4 and B31.8 pipeline codes, as well as currently developing a repair standard for non-metallic composite repair systems by the Post Construction Committee. Stress Engineering Services, Inc. and Kiefner & Associates, Inc. have been integrally involved in assessing the repair of pipeline systems, with the former having been involved in performing full-scale testing and analysis on most of the major U.S.-based composite repair systems. The purpose of this paper is to provide for the pipeline industry a third-party evaluation of composite repair systems and information that is needed to properly evaluate how composite materials should be used to repair high pressure pipelines. The contents of the paper will include discussions on what critical elements should be evaluated for each composite system, items of caution and concern, and the importance of evaluation to ensure safe long-term performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.