Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.
The cerebral cortex and hippocampus are important for the control of cognitive functions and social behaviors, many of which are sexually dimorphic and tightly regulated by gonadal steroid hormones via activation of their respective nuclear receptors. As different levels of sex steroid hormones are present between the sexes during early development and their receptors act as transcription factors to regulate gene expression, we hypothesize that sexually dimorphic gene expression in the developing mouse cortex and hippocampus might result in sex differences in brain structures and neural circuits governing distinct behaviors between the sexes as adults. To test our hypothesis, we used gene expression microarrays to identify 90 candidate genes differentially expressed in the neonatal cortex/hippocampus between male and female mice, including 55 male-biased and 35 female-biased genes. Among these genes, sexually dimorphic expression of eight sex chromosome genes was confirmed by reverse transcription with quantitative PCR (RT-qPCR), including three located on the X chromosome (Xist, Eif2s3x, and Kdm6a), three on the Y chromosome (Ddx3y, Eif2s3y, and Kdm5d), and two in the pseudoautosomal region of the X and Y chromosomes (Erdr1 and Mid1). In addition, five autosomal genes (Cd151, Dab2, Klk8, Meg3, and Prkdc) were also validated for their sexually dimorphic expression in the neonatal mouse cortex/hippocampus. Gene Ontology annotation analysis suggests that many of these sexually dimorphic genes are involved in histone modifications, cell proliferation/death, androgen/estrogen signaling pathways, and synaptic organization, and these biological processes have been implicated in differential neural development, cognitive function, and neurological diseases between the sexes.
Profiling olfactory neuronal cells from many individuals reveals variations in epigenetic signatures.
BACKGROUNDGWAS of schizophrenia demonstrated that variations in the non-coding regions are responsible for most of common variation heritability of the disease. It is hypothesized that these risk variants alter gene expression. Thus, studying alterations in gene expression in schizophrenia may provide a direct approach to understanding the etiology of the disease. In this study we use Cultured Neural progenitor cells derived from Olfactory Neuroepithelium (CNON) as a genetically unaltered cellular model to elucidate the neurodevelopmental aspects of schizophrenia.METHODSWe performed a gene expression study using RNA-Seq of CNON from 111 controls and 144 individuals with schizophrenia. Differentially expressed (DEX) genes were identified with DESeq2, using covariates to correct for sex, age, library batches and one surrogate variable component.RESULTS80 genes were DEX (FDR<10%), showing enrichment in cell migration, cell adhesion, developmental process, synapse assembly, cell proliferation and related gene ontology categories. Cadherin and Wnt signaling pathways were positive in overrepresentation test, and, in addition, many genes are specifically involved in Wnt5A signaling. The DEX genes were significantly, enriched in the genes overlapping SNPs with genome-wide significant association from the PGC GWAS of schizophrenia (PGC SCZ2). We also found substantial overlap with genes associated with other psychiatric disorders or brain development, enrichment in the same GO categories as genes with mutations de novo in schizophrenia, and studies of iPSC-derived neural progenitor cells.CONCLUSIONSCNON cells are a good model of the neurodevelopmental aspects of schizophrenia and can be used to elucidate the etiology of the disorder.
Applying tissue-specific deconvolution of transcriptional networks to identify their master regulators (MRs) in neuropsychiatric disorders has been largely unexplored. Here, using two schizophrenia (SCZ) case-control RNA-seq datasets, one on postmortem dorsolateral prefrontal cortex (DLPFC) and another on cultured olfactory neuroepithelium, we deconvolved the transcriptional networks and identified TCF4 as a top candidate MR that may be dysregulated in SCZ. We validated TCF4 as a MR through enrichment analysis of TCF4-binding sites in induced pluripotent stem cell (hiPSC)–derived neurons and in neuroblastoma cells. We further validated the predicted TCF4 targets by knocking down TCF4 in hiPSC-derived neural progenitor cells (NPCs) and glutamatergic neurons (Glut_Ns). The perturbed TCF4 gene network in NPCs was more enriched for pathways involved in neuronal activity and SCZ-associated risk genes, compared to Glut_Ns. Our results suggest that TCF4 may serve as a MR of a gene network dysregulated in SCZ at early stages of neurodevelopment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.