Tonic basal release of nitric oxide (NO) by vascular endothelial cells controls blood pressure (BP) in the basal state. In these studies we investigated the effects of chronic inhibition of basal NO synthesis in the rat for a 2-mo period. Significant systemic hypertension developed in chronically NO-blocked rats compared to controls. Marked renal vasoconstriction was also observed with elevations in glomerular blood pressure (PGC) and reductions in the glomerular capillary ultrafiltration coefficient (Kf). Chronically NO-blocked rats also develop proteinuria and glomerular sclerotic injury compared to controls. These studies therefore describe a new model of systemic hypertension with glomerular capillary hypertension and renal disease due to chronic blockade of endogenous NO synthesis. These observations highlight the importance of the endogenous NO system in control of normal vascular tone and suggest that hypertensive states may result from relative NO deficiency. (J. Clin. Invest. 1992. 90:278-281.) Key words: nitric oxide * hypertension glomerulus * single nephron glomerular filtration rate
The overall production of nitric oxide (NO) is decreased in chronic kidney disease (CKD) which contributes to cardiovascular events and further progression of kidney damage. There are many likely causes of NO deficiency in CKD and the areas surveyed in this review are: 1. Limitations on substrate (l-Arginine) availability, probably due to impaired renal l-Arginine biosynthesis, decreased transport of l-Arginine into endothelial cells and possible competition between NOS and competing metabolic pathways, such as arginase. 2. Increased circulating levels of endogenous NO synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Increased methylation of proteins and their subsequent breakdown to release free ADMA may contribute but the major culprit is probably reduced ADMA catabolism by the enzymes dimethylarginine dimethylaminohydrolases. 3. Reduced renal cortex abundance of the neuronal NOS (nNOS)α protein correlates with injury while increasing nNOSβ abundance may provide a compensatory, protective response. Interventions that can restore NO production by targeting these various pathways are likely to reduce the cardiovascular complications of CKD as well as slowing the rate of progression.
OBJECTIVEHyperuricemia is strongly associated with obesity and metabolic syndrome and can predict visceral obesity and insulin resistance. Previously, we showed that soluble uric acid directly stimulated the redox-dependent proinflammatory signaling in adipocytes. In this study we demonstrate the role of hyperuricemia in the production of key adipokines.RESEARCH DESIGN AND METHODSWe used mouse 3T3-L1 adipocytes, human primary adipocytes, and a mouse model of metabolic syndrome and hyperuricemia.RESULTSUric acid induced in vitro an increase in the production (mRNA and secreted protein) of monocyte chemotactic protein-1 (MCP-1), an adipokine playing an essential role in inducing the proinflammatory state in adipocytes in obesity. In addition, uric acid caused a decrease in the production of adiponectin, an adipocyte-specific insulin sensitizer and anti-inflammatory agent. Uric acid–induced increase in MCP-1 production was blocked by scavenging superoxide or by inhibiting NADPH oxidase and by stimulating peroxisome-proliferator–activated receptor-γ with rosiglitazone. Downregulation of the adiponectin production was prevented by rosiglitazone but not by antioxidants. In obese mice with metabolic syndrome, we observed hyperuricemia. Lowering uric acid in these mice by inhibiting xanthine oxidoreductase with allopurinol could improve the proinflammatory endocrine imbalance in the adipose tissue by reducing production of MCP-1 and increasing production of adiponectin. In addition, lowering uric acid in obese mice decreased macrophage infiltration in the adipose tissue and reduced insulin resistance.CONCLUSIONSHyperuricemia might be partially responsible for the proinflammatory endocrine imbalance in the adipose tissue, which is an underlying mechanism of the low-grade inflammation and insulin resistance in subjects with the metabolic syndrome.
Nitric oxide (NO) is an important molecular mediator of numerous physiological processes in virtually every organ. In the kidney, NO plays prominent roles in the homeostatic regulation of glomerular, vascular, and tubular function. Differential expression and regulation of the NO synthase (NOS) gene family contribute to this diversity of action. This review explores recent advances in the molecular and cell biology of the NOS isoforms and relates these findings to functions of NO in the control of normal renal hemodynamics, the glomerular microcirculation, and renal salt excretion. Newly recognized molecular diversity of the NOS gene products, factors governing NOS isozyme gene expression and catalytic activity, and the intrarenal distribution of the NOS isoforms are examined. Physiological data regarding the complex roles of NO in the control of renal hemodynamics and the glomerular microcirculation are analyzed, and the effects of chronic NOS inhibition on glomerular function and structure are presented. The contributions of NO to renal salt excretion as well as functional and molecular biological evidence for adaptive changes in NOS isoform expression during variations in dietary salt balance are discussed. Current investigative challenges and goals for future research of renal NO biology are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.