The stability analysis of an aerial vehicle is an of great importance integral part of its design procedure. It is of even greater importance in the case of tailless aircraft, which are prone to stability issues. In the present study, the aerodynamic and stability characteristics of a Vertical Take-off and Landing (VTOL) fixed wing Unmanned Aerial Vehicle (UAV), designated as MPU RX-4, are investigated. The MPU RX-4 has a flying wing layout and is capable of performing, both conventional flight, like a regular fixed wing aerial vehicle, as well as vertical hovering, like a multicopter, adapting on different operational demands and achieving rapid field deployment. In this study, the preliminary design phase of the MPU RX-4 is presented and the aerial vehicle’s aerodynamic performance, as well as, its stability and control behavior are assessed using both semi-empirical correlations, specifically modified for lightweight flying wing UAVs, and Computational Fluid Dynamics (CFD) analyses. These correlations are employed to estimate the non-dimensional aerodynamic coefficients for various flight conditions (e.g. cruise, loiter, maximum speed, etc.) of the MPU RX-4 flight envelope. Furthermore, the correlations are validated with dedicated CFD analyses in order to assure their level of accuracy. Finally, the MPU RX-4 stability and control derivatives, and the required control surfaces deflection for steady level flight are computed, in order to assess its overall aerodynamic performance and flight characteristics.
Flow control methods for aerodynamic drag reduction have been a field of interest to aircraft designers, who seek to minimize fuel consumption and increase the aircraft’s aerodynamic performance. Various flow control techniques, applied to aeronautical applications ranging from large airliners to small hand-launched unmanned aerial vehicles (UAVs), have been conceptualized, designed and tested in the past. Among others, the concept of riblets, inspired by the shark’s skin morphology, has been proposed and evaluated for airliners. In this work, the implementation of riblets on a medium-altitude long-endurance UAV (MALE) is investigated. The riblets can offer drag reduction due to the decrease in total skin friction, by altering the boundary layer characteristics in the near-wall region. The riblets are implemented on specific locations on the UAV (main wing, fuselage and empennage) and appropriately selected, on which the boundary layer becomes transitional from the laminar to the turbulent flow regime. For this reason, computational fluid dynamics modelling is performed by solving the Reynolds-averaged Navier–Stokes equations, incorporating the k-ω SST eddy viscosity turbulence model. The effect of the riblets in the near-wall region is modelled with the use of an appropriate wall boundary condition for the specific turbulence dissipation rate transport equation. It is shown that a drag reduction benefit, for both the loiter and the cruise flight segments of the UAV mission, can be obtained, and this is clearly presented by the drag polar diagrams of the air vehicle. Finally, the potential benefit to flight performance in terms of endurance and payload weight increase is also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.