We describe a quantitative method for using the quartz crystal microbalance (QCM) to characterize the high frequency viscoelastic response of glassy polymer coatings with thicknesses in the 5-10 μm regime. By measuring the frequency and dissipation at the fundamental resonant frequency (5 MHz) and at the third harmonic (15 MHz), we obtain three independent quantities. For coatings with a predominantly elastic response, characterized by relatively low phase angles, these quantities are the mass per unit area of the coating, the density-shear modulus product, and the phase angle itself. The approach was demonstrated with a model polyurethane coating, where the evolution of these properties as a function of cure time was investigated. For fully cured films, data obtained from the QCM are in good agreement with results obtained from traditional dynamic mechanical analysis.
Abstract. We introduce a natural extension of collapsible pushdown systems called annotated pushdown systems that replaces collapse links with stack annotations. We believe this new model has many advantages. We present a saturation method for global backwards reachability analysis of these models that can also be used to analyse collapsible pushdown systems. Beginning with an automaton representing a set of configurations, we build an automaton accepting all configurations that can reach this set. We also improve upon previous saturation techniques for higher-order pushdown systems by significantly reducing the size of the automaton constructed and simplifying the algorithm and proofs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.