A particularly promising line of quantum machine leaning (QML) algorithms with the potential to exhibit exponential speedups over their classical counterparts has recently been set back by a series of "dequantization" results, that is, quantum-inspired classical algorithms which perform equally well in essence. This raises the important question whether other QML algorithms are susceptible to such dequantization, or whether it can be formally argued that they are out of reach of classical computers. In this paper, we study the quantum algorithm for topological data analysis by Lloyd, Garnerone and Zanardi (LGZ). We provide evidence that certain crucial steps in this algorithm solve problems that are classically intractable by closely relating them to the one clean qubit model, a restricted model of quantum computation whose power is strongly believed to lie beyond that of classical computation. While our results do not imply that the topological data analysis problem solved by the LGZ algorithm (i.e., Betti number estimation) is itself DQC1-hard, our work does provide the first steps towards answering the question of whether it is out of reach of classical computers. Additionally, we discuss how to extend the applicability of this algorithm beyond its original aim of estimating Betti numbers and demonstrate this by looking into quantum algorithms for spectral entropy estimation. Finally, we briefly consider the suitability of the LGZ algorithm for near-term implementations.
The usual method for studying run-times of quantum algorithms is via an asymptotic, worstcase analysis. Whilst useful, such a comparison can often fall short: it is not uncommon for algorithms with a large worst-case run-time to end up performing well on instances of practical interest. To remedy this it is necessary to resort to run-time analyses of a more empirical nature, which for sufficiently small input sizes can be performed on a quantum device or a simulation thereof. For larger input sizes, alternative approaches are required.In this paper we consider an approach that combines classical emulation with rigorous complexity bounds: simulating quantum algorithms by running classical versions of the sub-routines, whilst simultaneously collecting information about what the run-time of the quantum routine would have been if it were run instead. To do this accurately and efficiently for very large input sizes, we describe an estimation procedure that provides provable guarantees on the estimates that it obtains. A nice feature of this approach is that it allows one to compare the performance of quantum and classical algorithms on particular inputs of interest, rather than only on those that allow for an easier mathematical analysis.We apply our method to some simple quantum speedups of classical heuristic algorithms for solving the well-studied MAX-k-SAT optimization problem. To do this we first obtain some rigorous bounds (including all constants) on the expected-and worst-case complexities of two important quantum sub-routines, which improve upon existing results and might be of broader interest: Grover search with an unknown number of marked items, and quantum maximum-finding. Our results suggest that such an approach can provide insightful and meaningful information, in particular when the speedup is of a small polynomial nature.
We study space and time-efficient quantum algorithms for two graph problems – deciding whether an n-vertex graph is a forest, and whether it is bipartite. Via a reduction to the s-t connectivity problem, we describe quantum algorithms for deciding both properties in O˜(n 3/2 ) time whilst using O(log n) classical and quantum bits of storage in the adjacency matrix model. We then present quantum algorithms for deciding the two properties in the adjacency array model, which run in time O˜(n √ dm) and also require O(log n) space, where dm is the maximum degree of any vertex in the input graph.
We consider the complexity of the local Hamiltonian problem in the context of fermionic Hamiltonians with N = 2 supersymmetry and show that the problem remains QMA-complete. Our main motivation for studying this is the well-known fact that the ground state energy of a supersymmetric system is exactly zero if and only if a certain cohomology group is nontrivial. This opens the door to bringing the tools of Hamiltonian complexity to study the computational complexity of a large number of algorithmic problems that arise in homological algebra, including problems in algebraic topology, algebraic geometry, and group theory. We take the first steps in this direction by introducing the k-local Cohomology problem and showing that it is QMA 1 -hard and, for a large class of instances, is contained in QMA. We then consider the complexity of estimating normalized Betti numbers and show that this problem is hard for the quantum complexity class DQC1, and for a large class of instances is contained in BQP. In light of these results, we argue that it is natural to frame many of these homological problems in terms of finding ground states of supersymmetric fermionic systems. As an illustration of this perspective we discuss in some detail the model of Fendley, Schoutens, and de Boer consisting of hard-core fermions on a graph, whose ground state structure encodes l-dimensional holes in the independence complex of the graph. This offers a new perspective on existing quantum algorithms for topological data analysis and suggests new ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.