Cloned type III secretion systems have much potential to be used for bacterial engineering purposes involving protein secretion and substrate translocation directly into eukaryotic cells. We have previously cloned the SPI-1 and SPI-2 type III systems from the Salmonella enterica serovar Typhimurium genome using plasmid R995 which can conveniently capture large genomic segments for transfer between bacterial strains. However, though expressed and functional in Salmonella strains, cloned SPI-1 was previously observed to have a serious expression defect in other Gram negative bacteria including Escherichia coli. Here we show that cloned SPI-1 expression and secretion can be detected in the secretion preps from E. coli and Citrobacter indicating the first observation of non-Salmonella SPI-1 expression. We describe a compatible plasmid system to introduce engineered SPI-1 substrates into cloned SPI-1 strains. However, a SPI-1 translocation defect is still observed in E. coli, and we show that this is likely due to a defect in SipB expression/secretion in this species. In addition, we also examined the requirement for the hilA and ssrAB regulators in the expression of cloned SPI-1 and SPI-2, respectively. We found a strict requirement for hilA for full cloned SPI-1 expression and secretion. However, though we found that ssrAB is required for full cloned SPI-2 expression in a range of media across different bacteria, it is not required for cloned SPI-2 expression in MgM8 inducing media in S. Typhimurium. This suggests that under SPI-2 inducing conditions in S. Typhimurium, other factors can substitute for loss of ssrAB in cloned SPI-2 expression. The results provide key foundational information for the future use of these cloned systems in bacteria.
Due to its potential for use in bacterial engineering applications, we previously cloned the SPI-1 type 3 secretion system (T3SS) genes from the genome of Salmonella enterica serovar Typhimurium strain LT2. We have documented that this clone, while functionally expressed in S. Typhimurium strains, displays a severe expression defect in other Gram negative backgrounds including Escherichia coli. To address this issue, we compared SPI-1 DNA sequence across different backgrounds, fully sequenced the original SPI-1 clone, and cloned SPI-1 from other S. Typhimurium strains. In this process, we were able to successfully obtain SPI-1 clones that are functionally expressed in E. coli indicating the first such result for a full-length SP-1 T3SS clone. We discovered that the original cloning technique using a DNA homology-based capture method was the root of the expression defect and that the FRT-Capture technique is preferable over the homology-based method. This result paves the way for future studies and applications using cloned SPI-1 and other T3SS in non-Salmonella bacterial backgrounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.