Abstract. Analyses of life-history, ecological, and geographic trait differences among species, their causes, correlates, and likely consequences are increasingly important for understanding and conserving biodiversity in the face of rapid global change. Assembling multispecies trait data from diverse literature sources into a single comprehensive data set requires detailed consideration of methods to reliably compile data for particular species, and to derive single estimates from multiple sources based on different techniques and definitions. Here we describe PanTHERIA, a species-level data set compiled for analysis of life history, ecology, and geography of all known extant and recently extinct mammals. PanTHERIA is derived from a database capable of holding multiple geo-referenced values for variables within a species containing 100 740 lines of biological data for extant and recently extinct mammalian species, collected over a period of three years by 20 individuals. PanTHERIA also includes spatial databases of mammalian geographic ranges and global climatic and anthropogenic variables. Here we detail how the data fields are extracted and defined for PanTHERIA using a customized data input format (MammalForm); how data were collected from the literature, species names and sources tracked, error-checking and validation procedures applied, and how data were consolidated into species-level values for each variable. Tables of the consolidated species-level values are made available for each of two recent species-level taxonomic classifications of mammals, as well as associated taxonomic synonymy conversion and data-input files. This study provides a useful guide to prospective researchers on how to structure and codify life-history, ecological, geographic, and taxonomic data and methods to extract meaningful species-level traits. It also provides comprehensive information on traits like size, diet, environmental conditions, and ecology to permit macroecological and macroevolutionary analyses of this important clade.
1.Density estimation is of fundamental importance in wildlife management. The use of camera traps to estimate animal density has so far been restricted to capture-recapture analysis of species with individually identifiable markings. This study developed a method that eliminates the requirement for individual recognition of animals by modelling the underlying process of contact between animals and cameras. 2. The model provides a factor that linearly scales trapping rate with density, depending on two key biological variables (average animal group size and day range) and two characteristics of the camera sensor (distance and angle within which it detects animals). 3. We tested the approach in an enclosed animal park with known abundances of four species, obtaining accurate estimates in three out of four cases. Inaccuracy in the fourth species was because of biased placement of cameras with respect to the distribution of this species. 4. Synthesis and applications. Subject to unbiased camera placement and accurate measurement of model parameters, this method opens the possibility of reduced labour costs for estimating wildlife density and may make estimation possible where it has not been previously. We provide guidelines on the trapping effort required to obtain reasonably precise estimates.
Species in the mammalian order Carnivora exhibit a huge diversity of life histories with body sizes spanning more than three orders of magnitude. Despite this diversity, most terrestrial carnivores can be classified as either feeding on invertebrates and small vertebrates or on large vertebrates. Small carnivores feed predominantly on invertebrates probably because they are a superabundant resource (sometimes 90% of animal biomass); however, intake rates of invertebrate feeders are low, about one tenth of those of vertebrate feeders. Although small carnivores can subsist on this diet because of low absolute energy requirements, invertebrate feeding appears to be unsustainable for larger carnivores. Here we show, by reviewing the most common live prey in carnivore diets, that there is a striking transition from feeding on small prey (less than half of predator mass) to large prey (near predator mass), occurring at predator masses of 21.5-25 kg. We test the hypothesis that this dichotomy is the consequence of mass-related energetic requirements and we determine the predicted maximum mass that an invertebrate diet can sustain. Using a simple energetic model and known invertebrate intake rates, we predict a maximum sustainable mass of 21.5 kg, which matches the point where predators shift from small to large prey.
Space used by animals increases with increasing body size. Energy requirements alone can explain how population density decreases, but not the steep rate at which home range area increases. We present a general mechanistic model that predicts the frequency of interaction, spatial overlap, and loss of resources to neighbors. Extensive empirical evidence supports the model, demonstrating that spatial constraints on defense cause exclusivity of home range use to decrease with increasing body size. In large mammals, over 90% of available resources may be lost to neighbors. Our model offers a general framework to understand animal space use and sociality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.