Many biologically active agents exert a pleiotropic response in cells and tissues. This presents challenges in descriptive and comparative analysis of the proteome in response to these agents. Although free-flow electrophoresis has been applied in a number of proteomic studies as a protein separation technique, the combination of free-flow electrophoresis and DIGE has not yet been investigated for comparative proteomic analysis. In this study, we have compared the effects of butyrate on HT29 colorectal cancer cells with a particular focus on apoptosis and describe the utility of a novel approach combining free-flow electrophoresis with DIGE to identify differentially expressed proteins. We verify the results obtained by the combined free-flow electrophoresis and DIGE approach with Western blot analysis of selected proteins. We also report for the first time the regulation of a number of proteins by butyrate in HT29 colorectal cells including peptidyl-prolyl cis-trans isomerase A (cyclophilin A) and profilin-1.
Free flow electrophoresis (FFE) has been applied in numerous studies as a protein separation technique due to its multiple advantages such as fast and efficient sample recovery, high resolving power, high reproducibility, and wide applicability to protein classes. As a stand-alone platform however, its utility in comparative proteomic analysis is limited as protein samples must be run sequentially rather than simultaneously which introduces inherent variability when attempting to perform quantitative analysis. Here we describe an approach combining fluorescent CyDye technology (DIGE) with FFE to simultaneously separate and identify differentially expressed proteins in a model cell system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.