BackgroundKetogenic diets are a commonly used weight loss method, but little is known how variations in sodium content and ketones influence cognition and mood during the early keto-adaptation period.ObjectivesTo investigate the effects of an exogenous ketone salt (KS) as part of a hypocaloric KD on mood and cognitive outcomes in overweight and obese adults. A secondary objective was to evaluate changes in biochemical markers associated with inflammatory and cognitive responses.Materials and methodsAdults who were overweight or obese participated in a 6-week controlled-feeding intervention comparing hypocaloric diets (∼75% of energy expenditure). KD groups received twice daily ketone salt (KD + KS; n = 12) or a flavor-matched placebo, free of minerals (KD + PL; n = 13). A separate group of age and BMI matched adults were later assigned to an isoenergetic low-fat diet (LFD; n = 12) as comparison to KD. Mood was assessed by shortened Profile of Mood States and Visual Analog Mood Scale surveys. Cognitive function was determined by the Automated Neuropsychological Assessment Metrics mental test battery.ResultsBoth KD groups achieved nutritional ketosis. Fasting serum glucose decreased in both KD groups, whereas glucose was unaffected in the LFD. Insulin decreased at week 2 and remained lower in all groups. At week 2, depression scores in the KD + PL group were higher compared to KD + KS. Performance in the math processing and go/no-go cognitive tests were lower for KD + PL and LFD participants, respectively, compared to KD + KS. Serum leptin levels decreased for all groups throughout the study but were higher for KD + KS group at week 6. Serum TNF-α steadily increased for LFD participants, reaching significance at week 6.ConclusionDuring a short-term hypocaloric diet, no indication of a consistent decline in mood or cognitive function were seen in participants following either KD, despite KD + PL being relatively low in sodium. WK2 scores of “anger” and “depression” were higher in the LFD and KD + PL groups, suggesting that KS may attenuate negative mood parameters during the early intervention stages.
Context Ketogenic diets (KDs) and low-fat diets (LFD) result in similar weight loss, but differential cardiometabolic effects on lipids and insulin. Generally, weight loss decreases renin-angiotensin-aldosterone system (RAAS) activity. Objective Investigate the effects of KDs with varying sodium content versus LFD on RAAS in overweight and obese adults. Design Twenty-eight participants were randomized 1:1 to KD + ketone salt supplement (KD + KS) or a KD + placebo (KD + PL) arms with prepared hypocaloric meals. Twelve participants were enrolled in a post-hoc LFD arm. Serum renin, aldosterone, anthropometric and metabolic biomarkers, were assessed at 0, 2, 4, and 6 weeks. Linear mixed models with random intercepts were used to compare between group differences controlling for sex and body mass index. Results Participants had a median age of 33 years, 51% female, weighed 91.3 kg, with body mass index 30.6 kg/m2. At 6 weeks, weight decreased by 6, 8, and 7 kg on average in the KD + KS, KD + PL, and LFD groups, respectively (p < 0.05). Aldosterone increased by 88% and 144% in the KD + PL and KD + KS groups, respectively, but did not change in the LFD after 6 weeks while renin decreased across groups. Systolic and diastolic blood pressure did not change in the KD + PL and KD + KS groups. Log-ketones were positively associated with aldosterone (p < 0.001). Aldosterone was not associated with cardiovascular measures including blood pressure and ejection fraction (p > 0.05). Conclusion KD reduced weight and increased aldosterone without worsening cardiometabolic risk factors. Future KD studies are needed to elucidate mechanistic connections between ketones and aldosterone.
Brain-Derived Neurotropic Factor (BDNF) expression is decreased in conditions associated with cognitive decline as well as metabolic diseases. One potential strategy to improve metabolic health and elevate BDNF is by increasing circulating ketones. Beta-Hydroxybutyrate (BHB) stimulates BDNF expression, but the association of circulating BHB and plasma BDNF in humans has not been widely studied. Here, we present results from three studies that evaluated how various methods of inducing ketosis influenced plasma BDNF in humans. Study 1 determined BDNF responses to a single bout of high-intensity cycling after ingestion of a dose of ketone salts in a group of healthy adults who were habitually consuming either a mixed diet or a ketogenic diet. Study 2 compared how a ketogenic diet versus a mixed diet impacts BDNF levels during a 12-week resistance training program in healthy adults. Study 3 examined the effects of a controlled hypocaloric ketogenic diet, with and without daily use of a ketone-salt, on BDNF levels in overweight/obese adults. We found that (1) fasting plasma BDNF concentrations were lower in keto-adapted versus non keto-adapted individuals, (2) intense cycling exercise was a strong stimulus to rapidly increase plasma BDNF independent of ketosis, and (3) clinically significant weight loss was a strong stimulus to decrease fasting plasma BDNF independent of diet composition or level of ketosis. These results highlight the plasticity of plasma BDNF in response to lifestyle factors but does not support a strong association with temporally matched BHB concentrations.
New Findings What is the central question of the study?Can a novel, energy‐dense and lightweight ketogenic bar (1000 kcal) consumed 3 h before exercise modulate steady‐state incline rucksack march (‘ruck’) performance compared to isocaloric carbohydrate bars in recreationally active, college‐aged men? What is the main finding and its importance?Acute ingestion of either nutritional bar sustained ∼1 h of exhaustive rucking with a 30% of body weight rucksack. This proof‐of‐concept study is the first to demonstrate that carbohydrate bars and lipid bars are equally feasible for preserving ruck performance. Novel ketogenic nutrition bars may have military‐relevant applications to lessen carry load without compromising exercise capacity. Abstract Rucksack marches (‘rucks’) are strenuous, military‐relevant exercises that may benefit from pre‐event fuelling. The purpose of this investigation was to explore whether acute ingestion of carbohydrate‐ or lipid‐based nutritional bars before rucking can elicit unique advantages that augment exercise performance. Recreationally active and healthy males (n = 29) were randomized and counterbalanced to consume 1000 kcal derived from a novel, energy‐dense (percentage energy from carbohydrate/fat/protein: 5/83/12) ketogenic bar (KB), or isocaloric high‐carbohydrate bars (CB; 61/23/16) 3 h before a time‐to‐exhaustion (TTE) ruck. Conditions were separated by a 1‐week washout. The rucksack weight was standardized to 30% of bodyweight. Steady‐state treadmill pace was set at 3.2 km/h (0.89 m/s) and 14% grade. TTE was the primary outcome; respiratory exchange ratio (RER), capillary ketones (R‐β‐hydroxybutyrate), glucose and lactate, plus subjective thirst/hunger were the secondary outcomes. Mean TTE was similar between conditions (KB: 55 ± 25 vs. CB: 54 ± 22 min; P = 0.687). The RER and substrate oxidation rates revealed greater fat and carbohydrate oxidation after the KB and CB, respectively (all P < 0.0001). Capillary R‐βHB increased modestly after the KB ingestion (P < 0.0001). Neither bar influenced glycaemia. Lactate increased during the ruck independent of the condition (P < 0.0001). Thirst/fullness perceptions changed independent of the nutritional bar consumed. A novel KB nutritional bar produced equivalent TTE ruck results to the isocaloric CBs. The KB's energy density relative to CB (6.6 vs. 3.8 kcal/g) may provide a lightweight (–42% weight), pre‐event fuelling alternative that does not compromise ruck physical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.