This paper presents an experimental investigation on a copper miniature loop heat pipe (mLHP) with a flat disk shaped evaporator, 30 mm in diameter and 10-mm thick, designed for thermal control of computer microprocessors. Tests were conducted with water as the heat transfer fluid. The device was capable of transferring a heat load of 70 W through a distance up to 150 mm using 2-mm diameter transport lines. For a range of power applied to the evaporator, the system demonstrated very reliable startup and was able to achieve steady state without any symptoms of wick dry-out. Unlike cylindrical evaporators, flat evaporators are easy to attach to the heat source without need of any cylinder-to-plane reducer material at the interface and thus offer very low thermal resistance to the heat acquisition process. In the horizontal configuration, under air cooling, the minimum value for the mLHP thermal resistance is 0.17 C/W with the corresponding evaporator thermal resistance of 0.06 C/W. It is concluded from the outcomes of the current study that a mLHP with flat evaporator geometry can be effectively used for the thermal control of electronic equipment including notebooks with limited space and high heat flux chipsets. The results also confirm the superior heat transfer characteristics of the copper-water configuration in mLHPs.Index Terms-CPU cooling, flat evaporator, miniature loop heat pipe (mLHP), thermal control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.