Condensed tannins (CTs) account for up to 20% of the dry matter in forage legumes used as ruminant feeds. Beneficial animal responses to CTs have included improved growth, milk and wool production, fertility, and reduced methane emissions and ammonia volatilization from dung or urine. Most important is the ability of such forages to combat the effects of gastrointestinal parasitic nematodes. Inconsistent animal responses to CTs were initially attributed to concentration in the diet, but recent research has highlighted the importance of their molecular structures, as well as concentration, and also the composition of the diet containing the CTs. The importance of CT structural traits cannot be underestimated. Interdisciplinary research is the key to unraveling the relationships between CT traits and bioactivities and will enable future on‐farm exploitation of these natural plant compounds. Research is also needed to provide plant breeders with guidelines and screening tools to optimize CT traits, in both the forage and the whole diet. In addition, improvements are needed in the competitiveness and agronomic traits of CT‐containing legumes and our understanding of options for their inclusion in ruminant diets. Farmers need varieties that are competitive in mixed swards and have predictable bioactivities. This review covers recent results from multidisciplinary research on sainfoin (Onobrychis Mill. spp.) and provides an overview of current developments with several other tanniniferous forages. Tannin chemistry is now being linked with agronomy, plant breeding, animal nutrition, and parasitology. The past decade has yielded considerable progress but also generated more questions—an enviable consequence of new knowledge!
The precipitation of bovine serum albumin (BSA), lysozyme (LYS), and alfalfa leaf protein (ALF) by two large- and two medium-sized condensed tannin (CT) fractions of similar flavan-3-ol subunit composition is described. CT fractions isolated from white clover flowers and big trefoil leaves exhibited high-purity profiles by 1D/2D NMR and purities >90% (determined by thiolysis). At pH 6.5, large CTs with a mean degree of polymerization (mDP) of ∼18 exhibited similar protein precipitation behaviors and were significantly more effective than medium CTs (mDP ∼9). Medium CTs exhibited similar capacities to precipitate ALF or BSA, but showed small but significant differences in their capacity to precipitate LYS. All CTs precipitated ALF more effectively than BSA or LYS. Aggregation of CT-protein complexes likely aided precipitation of ALF and BSA, but not LYS. This study, one of the first to use CTs of confirmed high purity, demonstrates that the mDP of CTs influences protein precipitation efficacy.
Milk is the largest source of iodine in UK diets and an earlier study showed that organic summer milk had significantly lower iodine concentration than conventional milk. There are no comparable studies with winter milk or the effect of milk fat class or heat processing method. Two retail studies with winter milk are reported. Study 1 showed no effect of fat class but organic milk was 32.2% lower in iodine than conventional milk (404 vs. 595 μg/L; P<0.001). Study 2 found no difference between conventional and Channel Island milk but organic milk contained 35.5% less iodine than conventional milk (474 vs. 306 μg/L; P<0.001). UHT and branded organic milk also had lower iodine concentrations than conventional milk (331 μg/L; P<0.001 and 268 μg/L: P<0.0001 respectively). The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women.
Studies with a diverse array of 22 purified condensed tannin (CT) samples from nine plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans-flavan-3-ol ratios can be appraised by (1)H-(13)C HSQC NMR spectroscopy. The method was developed from samples containing 44-∼100% CT, PC/PD ratios ranging from 0/100 to 99/1, and cis/trans ratios ranging from 58/42 to 95/5 as determined by thiolysis with benzyl mercaptan. Integration of cross-peak contours of H/C-6' signals from PC and of H/C-2',6' signals from PD yielded nuclei-adjusted estimates that were highly correlated with PC/PD ratios obtained by thiolysis (R(2) = 0.99). cis/trans-Flavan-3-ol ratios, obtained by integration of the respective H/C-4 cross-peak contours, were also related to determinations made by thiolysis (R(2) = 0.89). Overall, (1)H-(13)C HSQC NMR spectroscopy appears to be a viable alternative to thiolysis for estimating PC/PD and cis/trans ratios of CT if precautions are taken to avoid integration of cross-peak contours of contaminants.
Milk is the largest source of iodine in UK diets and earlier studies showed organic summer and winter milk to be significantly lower in iodine than conventional milk. One study also showed UHT milk to have lower iodine concentration. The study on winter and UHT milk was small and accordingly a new study is reported here involving conventional, organic and UHT semi-skimmed milk from four supermarkets over a six-month period in summer and winter in two regions of the UK. The results showed organic milk to be 44% lower in iodine than conventional milk (427 vs. 241µg/L, P<0.001) and UHT milk was 27% lower in iodine than conventional milk (427 vs. 314µg/L, P<0.001) although the differences tended to be less in the summer. The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.