Shape memory polymer (SMP) materials have the capacity to undergo large deformations imposed by mechanical loading, hold a temporary shape, and then recover their original shape upon exposure to a particular external stimulus. The fiber reinforced shape memory polymer composites (SMPCs) with enhanced structural performances give a boost to breakthrough technologies for large-scale engineering applications. This article presents a novel technique for distributed optical fiber sensor (DOFS) embedded SMPCs intended for realtime process monitoring of large-scale engineering applications such as deployable space structures. Herein a carbon fiber reinforced SMPC was tested under a three-point flexural shape memory process and the DOFS data were acquired through optical backscatter reflectometry. Experiments were conducted in a temperature controlled thermal chamber coupled with a 10 kN electromechanical testing system. DOFSs offered unique advantages for spatially distributed dynamic temperature and strain measurements during the shape memory process. Compared to the standard test method dynamic mechanical analysis, larger samples can be tested effectively by using a single DOFS with large strain levels and shape complexity. The proposed technique demonstrated the ability of embedded DOFSs for in-situ shape memory characterization such as shape fixity ratio, shape recovery ratio and recovery rate. This technique will eliminate the challenges hindering the process monitoring and performance evaluation of large SMPC components operating in their real working environments.
This paper details a shape memory polymer (SMP) synthesis and characterization process has been undertaken to develop a bio-medical material for fabricating non-invasive custom prosthetic components and orthosis devices. The glass transition temperature of a one-way SMP epoxy is tailored for external biomedical applications since human skin is sensitive to high temperature (> 45°C). The key shape memory properties of shape fixity ratio, shape recovery ratio and shape retention properties were comprehensively analyzed, and thermomechanical properties were verified. SMPs can be customized for the purpose; thus, SMP prosthetic and orthosis devices will be ideal for first aid and emergency treatments until proper medical attention is received. Finally, brief details of an SMP bone immobilization casting method are provided to explain the application further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.