We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement.
We present the first demonstration of pL-scale analyte index sensing based on surface phonon polaritons in the midinfrared, which are excited at the silicon carbide/analyte interface in the Otto configuration. Attenuated total reflectance measurements reveal analyte index specificity through a double-scan of wavelength and incidence angle for analyte volumes as small as 100 pL. Midinfrared sensing tuned to surface phonon polariton resonance paves the way for index sensing of analytes beyond current volume-resolution limits.
A finite element method (FEM) for solving the complex valued k(ω) vs. ω dispersion curve of a 3D metamaterial/photonic crystal system is presented. This 3D method is a generalization of a previously reported 2D eigenvalue method [1,2]. This method is particularly convenient for analyzing periodic systems containing dispersive (e.g., plasmonic) materials, for computing isofrequency surfaces in the k-space, and for calculating the decay length of the evanescent waves. Two specific examples are considered: a photonic crystal comprised of dielectric spheres and a plasmonic fishnet structure. Hybridization and avoided crossings between Mie resonances and propagating modes are numerically demonstrated. Negative index propagation of four electromagnetic modes distinguished by their symmetry is predicted for the plasmonic fishnets. By calculating the isofrequency contours, we also demonstrate that the fishnet structure is a hyperbolic medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.