The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos T (A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra A. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum Σ(A) in T (A), which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on Σ, and self-adjoint elements of A define continuous functions (more precisely, locale maps) from Σ to Scott's interval domain. Noting that open subsets of Σ(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T (A).These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham. Motto'Ces "nuages probabilistes", remplaçant les rassurantes particules matérielles d'antan, me rappellentétrangement lesélusifs "voisinages ouverts" qui peuplent les topos, tels des fantômesévanescents, pour entourer des "points" imaginaires.' (A. Grothendieck [42]) 1 *
Abstract-Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed.Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition and a conceptual way to understand many high-level quantum phenomena. Here, we lay the foundations for this categorical quantum mechanics, with an emphasis on the graphical calculus that makes computation intuitive. We describe superposition and entanglement using biproducts and dual objects, and show how quantum teleportation can be studied abstractly using these structures. We investigate monoids, Frobenius structures and Hopf algebras, showing how they can be used to model classical information and complementary observables. We describe the CP construction, a categorical tool to describe probabilistic quantum systems. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding. Previous knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text, we point out links with many other areas, such as representation theory, topology, quantum algebra, knot theory and probability theory, and present nonstandard models including sets and relations. All results are stated rigorously and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
In many a traditional physics textbook, a quantum measurement is defined as a projective measurement represented by a Hermitian operator. In quantum information theory, however, the concept of a measurement is dealt with in complete generality and we are therefore forced to confront the more general notion of positive-operator valued measures (POVMs) which suffice to describe all measurements that can be implemented in quantum experiments. We study the (in)compatibility of such POVMs and show that quantum theory realizes all possible (in)compatibility relations among sets of POVMs. This is in contrast to the restricted case of projective measurements for which commutativity is essentially equivalent to compatibility. Our result therefore points out a fundamental feature with respect to the (in)compatibility of quantum observables that has no analog in the case of projective measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.