The nucleotide sequence of the entire histidine transport operon from Salmonella typhimurium has been determined and is shown to consist of four genes, hisJ, hisQ, hisM and hisP. This operon provides the only example of a binding protein-dependent transport system for which the total number of protein components is known. Determination of the amino acid compositions and sequences of these four transport proteins, together with analysis of various transport mutants, allows us to propose a molecular model for binding protein-dependent transport.
The possible role of Cl- currents in regulatory volume decrease processes has been explored in HeLa cells using the whole-cell recording mode of the patch-clamp technique. Cells showed very small currents in voltage-clamp experiments performed with Cl(-)-rich, permeant-cation-free (N-methyl-D-glucamine replacement) intracellular and bathing solutions. Exposure of the cells to hypotonic solutions visibly swelled the cells and activated, reversibly, an outward rectifying Cl- current, which decayed at the most depolarised voltages used. Replacement of extracellular Cl- by a series of halide anions, SCN- and gluconate was consistent with an anion selectivity sequence: SCN- > I- > Br- > Cl- > F- > gluconate. The volume-regulated Cl- current was effectively inhibited by 100 microM 5-nitro-2-(3-phenyl-propylamino)-benzoic acid and by 100 microM 4,4'-diisothiocyanotostilbene-2,2-disulphonic acid, substances known to block Cl- channels in a variety of cells. Chloride current activation by hypotonicity was dependent on the presence of ATP in the intracellular solution and this requirement could be replaced by the non-hydrolysable analogue ATP[gamma S] and Mg(2+)-free ATP. The data suggest that the channels responsible for the current described are involved in the regulatory volume decrease in HeLa cells. The characteristics of this Cl- current are similar to those of the current associated with expression of multidrug resistance P-glycoprotein. Furthermore, the currents in HeLa cells were inhibited rapidly and reversibly by verapamil and 1,9-dideoxyforskolin, which are known to inhibit P-glycoprotein function.
We found that Salmonella typhimurium strain LT2 (Z) possessed two immunologically distinct, membranebound hydrogenase isoenzymes, which were similar in electrophoretic mobilities and apoprotein contents to hydrogenase isoenzymes 1 and 2 of Escherichia coli. The S. typhimurium enzymes cross-reacted with antibodies raised to the respective hydrogenase isoenzymes of E. coli. As for E. coli, an additional membrane-bound hydrogenase activity (termed hydrogenase 3), which did not cross-react with antibodies raised against either hydrogenase 1 or 2, was also present in detergent-dispersed membrane preparations. The physiological role of each of the three isoenzymes in E. coli has remained unclear owing to the lack of mutants specifically defective for individual isoenzymes. However, analysis of two additional wild-type isolates of S. typhimunium revealed specific defects in their hydrogenase isoenzyme contents. S. typhimurium LT2 (A) lacked isoenzyme 2 but possessed normal levels of hydrogenases 1 and 3. S. typhimurium LT7 lacked both isoenzymes 1 and 2 but retained normal hydrogenase 3 activity. Characterization of hydrogen metabolism by these hydrogenasedefective isolates allowed us to identify the physiological role of each of the three isoenzymes. Hydrogenase 3 activity correlated closely with formate hydrogenlyase-dependent hydrogen evolution, whereas isoenzyme 2 catalyzed hydrogen uptake (oxidation) during anaerobic, respiration-dependent growth. Isoenzyme 1 also functioned as an uptake hydrogenase but only during fermentative growth. We postulate that this enzyme functions in a hydrogen-recycling reaction which operates during fermentative growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.