ObjectiveTo demonstrate that posttranslational modification of type II collagen (CII) by reactive oxygen species (ROS), which are known to be present in inflamed arthritic joints, can give rise to epitopes specific to damaged cartilage in rheumatoid arthritis (RA) and osteoarthritis (OA) and to establish a proof of concept that antibodies specific to ROS-modified CII can be used to target therapeutics specifically to inflamed arthritic joints.MethodsWe used a semisynthetic phage display human antibody library to raise single-chain variable fragments (scFv) specific to ROS-modified CII. The specificity of anti–ROS-modified CII scFv to damaged arthritic cartilage was assessed in vitro by immunostaining articular cartilage from RA and OA patients and from normal controls. The in vivo targeting potential was tested using mice with antigen-induced arthritis, in which localization of anti–ROS-modified CII scFv in the joints was determined. The therapeutic effect of anti–ROS-modified CII scFv fused to soluble murine tumor necrosis factor receptor II–Fc fusion protein (mTNFRII-Fc) was also investigated.ResultsThe anti–ROS-modified CII scFv bound to damaged arthritic cartilage from patients with RA and OA but not to normal preserved cartilage. When systemically administered to arthritic mice, the anti–ROS-modified CII accumulated selectively at the inflamed joints. Importantly, when fused to mTNFRII-Fc, it significantly reduced inflammation in arthritic mice, as compared with the effects of mTNFRII-Fc alone or of mTNFRII-Fc fused to an irrelevant scFv.ConclusionOur findings indicate that biologic therapeutics can be targeted specifically to arthritic joints and suggest a new approach for the development of novel treatments of arthritis.
IntroductionWe previously demonstrated that a single-chain fragment variable (scFv) specific to collagen type II (CII) posttranslationally modified by reactive oxygen species (ROS) can be used to target anti-inflammatory therapeutics specifically to inflamed arthritic joints. The objective of the present study was to demonstrate the superior efficacy of anti-inflammatory cytokines when targeted to inflamed arthritic joints by the anti-ROS modified CII (anti-ROS-CII) scFv in a mouse model of arthritis.MethodsViral interleukin-10 (vIL-10) was fused to anti-ROS-CII scFv (1-11E) with a matrix-metalloproteinase (MMP) cleavable linker to create 1-11E/vIL-10 fusion. Binding of 1-11E/vIL-10 to ROS-CII was determined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and immune-staining of arthritic cartilage, whereas vIL-10 bioactivity was evaluated in vitro by using an MC-9 cell-proliferation assay. Specific in vivo localization and therapeutic efficacy of 1-11E/vIL-10 was tested in the mouse model of antigen-induced arthritis.Results1-11E/vIL-10 bound specifically to ROS-CII and to damaged arthritic cartilage. Interestingly, the in vitro vIL-10 activity in the fusion protein was observed only after cleavage with MMP-1. When systemically administered to arthritic mice, 1-11E/vIL-10 localized specifically to the arthritic knee, with peak accumulation observed after 3 days. Moreover, 1-11E/vIL-10 reduced inflammation significantly quicker than vIL-10 fused to the control anti-hen egg lysozyme scFv (C7/vIL10).ConclusionsTargeted delivery of anti-inflammatory cytokines potentiates their anti-arthritic action in a mouse model of arthritis. Our results further support the hypothesis that targeting biotherapeutics to arthritic joints may be extended to include anti-inflammatory cytokines that lack efficacy when administered systemically.
Aims/hypothesis In this study the involvement of oxidative stress in type 1 diabetes mellitus autoimmunity and the possible association with rheumatoid arthritis (RA) was investigated. We tested the hypothesis that oxidative stress induced by chronic hyperglycaemia triggers post-translational modifications and thus the formation of neo-antigens in type 1 diabetes, similar to the ones found in RA. Methods Collagen type II (CII), a known autoantigen in RA, was treated with ribose and various reactive oxygen species (ROS). Levels of antibodies specific to native and ROS-modified CII (ROS-CII) were compared in type 1 diabetes, type 2 diabetes and healthy controls, and related to the HLA genotype. Results Significantly higher binding to ROS-CII vs native CII was observed in type 1 diabetic patients possessing the HLA-DRB1*04 allele irrespective of variables of glucose control (blood glucose or HbA 1c ). Type 1 diabetic patients carrying a DRB1*04 allele with the shared epitope showed the highest risk for ROS-CII autoimmunity, while the DRB1*0301 allele was protective. Conversely, native CII autoimmunity was not associated with any specific DRB1 allele. Positive and inverse seroconversion rates of response to ROS-CII were high in DRB1*04-positive type 1 diabetic patients. Conclusion Hyperglycaemia and oxidative stress may trigger genetically controlled autoimmunity to ROS-CII and may explain the association between type 1 diabetes mellitus and RA.Keywords Collagen type II . Post-translational modification . Reactive oxygen species . Rheumatoid arthritis Abbreviations ACPA Anti-citrullinated peptide antibodies P. Pozzilli and A. Nissim contributed equally to this work.
Objective. To isolate recombinant antibodies with specificity for human arthritic synovium and to develop targeting reagents with joint-specific delivery capacity for therapeutic and/or diagnostic applications.Methods. In vivo single-chain Fv (scFv) antibody phage display screening using a human synovial xenograft model was used to isolate antibodies specific to the microvasculature of human arthritic synovium. Singlechain Fv antibody tissue-specific reactivity was assessed by immunostaining of synovial tissues from normal controls and from patients with rheumatoid arthritis and osteoarthritis, normal human tissue arrays, and tissues from other patients with inflammatory diseases displaying neovasculogenesis. In vivo scFv antibody tissue-specific targeting capacity was examined in the human synovial xenograft model using both 125 I-labeled and biotinylated antibody.Results. We isolated a novel recombinant human antibody, scFv A7, with specificity for the microvasculature of human arthritic synovium. We showed that in vivo, this antibody could efficiently target human synovial microvasculature in SCID mice transplanted with human arthritic synovial xenografts. Our results demonstrated that scFv A7 antibody had no reactivity with the microvasculature or with other cellular components found in a comprehensive range of normal human tissues including normal human synovium. Further, we showed that the reactivity of the scFv A7 antibody was not a common feature of neovasculogenesis associated with chronic inflammatory conditions. Conclusion. Here we report for the first time the identification of an scFv antibody, A7, that specifically recognizes an epitope expressed in the microvasculature of human arthritic synovium and that has the potential to be developed as a joint-specific pharmaceutical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.