Migratory animals are threatened by human-induced global change. However, little is known about how stopover habitat, essential for refuelling during migration, affects the population dynamics of migratory species. Using 20 years of continent-wide citizen science data, we assess population trends of ten shorebird taxa that refuel on Yellow Sea tidal mudflats, a threatened ecosystem that has shrunk by >65% in recent decades. Seven of the taxa declined at rates of up to 8% per year. Taxa with the greatest reliance on the Yellow Sea as a stopover site showed the greatest declines, whereas those that stop primarily in other regions had slowly declining or stable populations. Decline rate was unaffected by shared evolutionary history among taxa and was not predicted by migration distance, breeding range size, non-breeding location, generation time or body size. These results suggest that changes in stopover habitat can severely limit migratory populations.
Summary1. There is increasing concern about the world's animal migrations. With many land-use and climatological changes occurring simultaneously, pinning down the causes of large-scale conservation problems requires sophisticated and data-intensive approaches. 2. Declining shorebird numbers along the East Asian-Australasian Flyway, in combination with data on habitat loss along the Yellow Sea (where these birds refuel during long-distance migrations), indicate a flyway under threat. 3. If habitat loss at staging areas indeed leads to flyway-wide bird losses, we would predict that: (i) decreases in survival only occur during the season that birds use the Yellow Sea, and (ii) decreases in survival occur in migrants that share a reliance on the vanishing intertidal flats along the Yellow Sea, even if ecologically distinct and using different breeding grounds. 4. Monitored from 2006-2013, we analysed seasonal apparent survival patterns of three shorebird species with non-overlapping Arctic breeding areas and considerable differences in foraging ecology, but a shared use of both north-west Australian non-breeding grounds and the Yellow Sea coasts to refuel during northward and southward migrations (red knot Calidris canutus piersmai, great knot Calidris tenuirostris, bar-tailed godwit Limosa lapponica menzbieri). Distinguishing two three-month non-breeding periods and a six-month migration and breeding period, and analysing survival of the three species and the three seasons in a single model, we statistically evaluated differences at both the species and season levels. 5. Whereas apparent survival remained high in north-west Australia, during the time away from the non-breeding grounds survival in all three species began to decline in 2011, having lost 20 percentage points by 2012. By 2012 annual apparent survival had become as low as 0Á71 in bar-tailed godwits, 0Á68 in great knots and 0Á67 in red knots. In a separate analysis for red knots, no mortality occurred during the migration from Australia to China. In the summers of low summer survival, weather conditions were benign in the Arctic breeding areas. 6. We argue that rapid seashore habitat loss in the Yellow Sea is the most likely explanation of reduced summer survival, with dire (but uncertain) forecasts for the future of these flyway populations. This interpretation is consistent with recent findings of declining shorebird numbers at seemingly intact southern non-breeding sites. 2016, 53, 479-490 doi: 10.1111/1365-2664.12582 7. Policy implications. Due to established economic interests, governments are usually reluctant to act for conservation, unless unambiguous evidence for particular cause-effect chains is apparent. This study adds to an increasing body of evidence that habitat loss along the Yellow Sea shores explains the widespread declines in shorebird numbers along the East Asian-Australasian Flyway and threatens the long-term prospects of several long-distance migrating species. To halt further losses, the clearance of coastal intertidal habita...
Migrating birds make the longest non‐stop endurance flights in the animal kingdom. Satellite technology is now providing direct evidence on the lengths and durations of these flights and associated staging episodes for individual birds. Using this technology, we compared the migration performance of two subspecies of bar‐tailed godwit Limosa lapponica travelling between non‐breeding grounds in New Zealand (subspecies baueri) and northwest Australia (subspecies menzbieri) and breeding grounds in Alaska and eastern Russia, respectively. Individuals of both subspecies made long, usually non‐stop, flights from non‐breeding grounds to coastal staging grounds in the Yellow Sea region of East Asia (average 10 060 ± SD 290 km for baueri and 5860 ± 240 km for menzbieri). After an average stay of 41.2 ± 4.8 d, baueri flew over the North Pacific Ocean before heading northeast to the Alaskan breeding grounds (6770 ± 800 km). Menzbieri staged for 38.4 ± 2.5 d, and flew over land and sea northeast to high arctic Russia (4170 ± 370 km). The post‐breeding journey for baueri involved several weeks of staging in southwest Alaska followed by non‐stop flights across the Pacific Ocean to New Zealand (11 690 km in a complete track) or stopovers on islands in the southwestern Pacific en route to New Zealand and eastern Australia. By contrast, menzbieri returned to Australia via stopovers in the New Siberian Islands, Russia, and back at the Yellow Sea; birds travelled on average 4510 ± 360 km from Russia to the Yellow Sea, staged there for 40.8 ± 5.6 d, and then flew another 5680–7180 km to Australia (10 820 ± 300 km in total). Overall, the entire migration of the single baueri godwit with a fully completed return track totalled 29 280 km and involved 20 d of major migratory flight over a round‐trip journey of 174 d. The entire migrations of menzbieri averaged 21 940 ± 570 km, including 14 d of major migratory flights out of 154 d total. Godwits of both populations exhibit extreme flight performance, and baueri makes the longest (southbound) and second‐longest (northbound) non‐stop migratory flights documented for any bird. Both subspecies essentially make single stops when moving between non‐breeding and breeding sites in opposite hemispheres. This reinforces the critical importance of the intertidal habitats used by fuelling godwits in Australasia, the Yellow Sea, and Alaska.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.