Rapid transformation of the workplace and a highly competitive labour market has changed the nature of graduate employability. In addition to discipline related knowledge, students now need to be proactive and adaptable in identifying career opportunities. This paper presents a conceptual model that views employability as determined by an overarching professional purpose mindset. This mindset reflects a person’s commitment to developing a professional future aligned to personal values, professional aspirations and societal outlook. Four specific mindsets are encapsulated within professional purpose (curiosity, collaboration, action and growth) and relate to three domains of development (self and social awareness; navigating the world of work and networks). Two studies were conducted to explore the professional purpose model. Study one was a qualitative study in which 33 undergraduate students (19 female; 14 male) explored their career decision making. Focus group and interview data showed that each of the four positive mindsets operated in many students’ proactive career related behaviours. However, for other students, alternative mindsets negatively influenced their career related behaviour. In the second study, 42 academics (28 male; 14 female) identified unit learning outcomes in existing curricula related to the three domains of development. All domains were evident but outcomes for navigating the world of work received most emphasis. Implications of the findings for further development of the professional purpose model are discussed.
Accurate knowledge of the operating temperature of thermal barrier coatings (TBCs) is not currently available, therefore significant safety margins are employed during operation of gas turbines, which limit the engine efficiency. Recently, phosphorescent sensor TBCs have been used to detect coating temperatures with a reported accuracy under isothermal conditions up to 4 K. However, the thermal gradient through a TBC in modern gas turbines is of the order of 1 K µm−1. The interpretation of the temperature provided by a sensor coating therefore requires a better understanding of the through thickness response of the material. Kubelka–Munk theory has been adapted to describe the light propagation and generation through the thickness of a sensor coating. The model indicates that the temperature measurement can be considered to come from a depth of 17 µm below the surface, depending on the coating type, thermal gradient and coating thickness. As such, the coating can be designed to suit the application, and the temperature variation due to the thermal gradient and coating thickness can be limited to 1%. Where coating design is restricted by its application, the sensor material can be embedded within the coating to avoid measurement errors due to thermal gradients, provided the sensor layer is sufficiently thin. This, however, causes a significant reduction in emission intensity, hence reducing the signal-to-noise ratio, and necessitating a compromise between signal amplitude and measurement accuracy.
Temperature profiling of components in gas turbines is of increasing importance as engineers drive to increase firing temperatures and optimize component’s cooling requirements in order to increase efficiency and lower CO2 emissions. However, on-line temperature measurements and, particularly, temperature profiling are difficult, sometimes impossible, to perform due to inaccessibility of the components. A desirable alternative would be to record the exposure temperature in such a way that it can be determined later, off-line. The commercially available thermal paints are toxic in nature and come with a range of technical disadvantages such as subjective readout and limited durability. This paper proposes a novel alternative measurement technique which the authors call thermal history paints and thermal history coatings. These can be particularly useful in the design process, but further could provide benefits in the maintenance area where hotspots which occurred during operation can be detected during maintenance intervals when the engine is at ambient temperature. This novel temperature profiling technique uses optical active ions in a ceramic host material. When these ions are excited by light they start to phosphoresce. The host material undergoes irreversible changes when exposed to elevated temperatures and since these changes are on the atomic level they influence the phosphorescent properties such as the life time decay of the phosphorescence. The changes in phosphorescence can be related to temperature through calibration such that in situ analysis will return the temperature experienced by the coating. A major benefit of this technique is in the automated interpretation of the coatings. An electronic instrument is used to measure the phosphorescence signal eliminating the need for a specialist interpreter, and thus increasing readout speed. This paper reviews results from temperature measurements made with a water-based paint for the temperature range 100–800 °C in controlled conditions. Repeatability of the tests and errors are discussed. Further, some measurements are carried out using an electronic hand-held interrogation device which can scan a component surface and provide a spatial resolution of below 3 mm. The instrument enables mobile measurements outside of laboratory conditions. Further, a robust thermal history coating is introduced demonstrating the capability of the coating to withstand long term exposures. The coating is based on thermal barrier coating (TBC) architecture with a high temperature bondcoat and deposited using an air plasma spray process to manufacture a reliable long lasting coating. Such a coating could be employed over the life of the component to provide critical temperature information at regular maintenance intervals for example indicating hot spots on engine parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.