The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging
Previous reports have suggested that Cx26 exhibits unique intracellular transport pathways en route to the cell surface compared with other members of the connexin family. To directly examine and compare nascent and steady-state delivery of Cx43 and Cx26 to the plasma membrane and gap junction biogenesis we expressed fluorescent-protein-tagged Cx43 and Cx26 in BICR-M1Rk and NRK cells. Static and time-lapse imaging revealed that both connexins were routed through the Golgi apparatus prior to being transported to the cell surface, a process inhibited in the presence of brefeldin A (BFA) or the expression of a dominant-negative form of Sar1 GTPase. During recovery from BFA, time-lapse imaging of nascent connexin Golgi-to-plasma membrane delivery revealed many dynamic post-Golgi carriers (PGCs) originating from the distal side of the Golgi apparatus consisting of heterogeneous vesicles and long, tubular-like extensions. Vesicles and tubular extensions were also observed in HBL-100 cells expressing a human, disease-linked, Golgi-localized Cx26 mutant, D66H-GFP. A diffuse cell surface rim of fluorescent-protein-tagged wild-type connexins was observed prior to the appearance of punctate gap junctions, which suggests that random fusion of PGCs occurred with the plasma membrane followed by lateral diffusion of connexins into clusters. Fluorescence recovery after photobleaching studies revealed that Cx26-YFP was more mobile within gap junction plaques compared with Cx43-GFP. Intriguingly, Cx43-GFP delivery and gap junction regeneration was inhibited by BFA and nocodazole, whereas Cx26-GFP delivery was prevented by BFA but not nocodazole. Collectively, these studies suggest that during gap junction biogenesis two phylogenetically distinct members of the connexin family, Cx43 and Cx26, share common secretory pathways, types of transport intermediates and turnover dynamics but differ in their microtubule-dependence and mobility within the plasma membrane, which might reflect differences in binding to protein scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.