This paper studies the impinging droplets on superhydrophobic textured surfaces and proposes a design guideline for nonwetting surfaces under droplet impingement. A new wetting pressure, the effective water hammer pressure, is introduced in the study to clearly define wetting states for the impinging droplets. This approach establishes the design criteria for nonwetting surfaces to impinging droplets. For impingement speed higher than raindrop speed, the surfaces need to have sub-100-nm features to generate a large enough antiwetting pressure for the droplets to take a nonwetting state after impingement.
The fabrication of micrometre- and nanometre-scale devices in silicon typically involves lithography and etching. These processes are costly and tend to be either limited in their resolution or slow in their throughput. Recent work has demonstrated the possibility of patterning substrates on the nanometre scale by 'imprinting' or directed self-assembly, although an etching step is still required to generate the final structures. We have devised and here demonstrate a rapid technique for patterning nanostructures in silicon that does not require etching. In our technique which -- we call 'laser-assisted direct imprint' (LADI) -- a single excimer laser pulse melts a thin surface layer of silicon, and a mould is embossed into the resulting liquid layer. A variety of structures with resolution better than 10 nm have been imprinted into silicon using LADI, and the embossing time is less than 250 ns. The high resolution and speed of LADI, which we attribute to molten silicon's low viscosity (one-third that of water), could open up a variety of applications and be extended to other materials and processing techniques.
We propose and demonstrate a nanopatterning technique, laser-assisted nanoimprint lithography (LAN), in which the polymer is melted by a single excimer laser pulse and then imprinted by a mold made of fused quartz. LAN has been used to pattern nanostructures in various polymer films on a Si or quartz substrate with high fidelity over the entire mold area. Here we show 200 nm pitch gratings with 100 nm linewidth and 90 nm height. The entire imprint from melting the polymer to completion of the imprint is less than 500 ns. The mold has been used multiple times without cleaning between each imprint. LAN not only greatly shortens the imprint processing time, but also significantly reduces the heating and expansion of the substrate and mold, leading to better overlay alignment between the two.
We report a method of one-step direct patterning of metallic nanostructures. In the method, termed laser assisted direct imprinting (LADI), the surface of a metal film on a substrate is melted by a single excimer laser pulse and subsequently imprinted within approximately 100 ns using a transparent quartz mold, while the substrate is kept at a low temperature and in a solid phase. Using LADI, we imprinted gratings with approximately 100 nm linewidth, 100 nm depth, and 200 nm pitch, as well as isolated mesas of approximately 20 microm size, in Al, Au, Cu and Ni thin films. We found that the quartz mold was able to imprint metals even at temperatures higher than its melting point. The technique could be extended to other metals regardless of their ductility and hardness, and would find applications in photonic and plasmonic device production.
We report on the selective-area heteroepitaxy and facet evolution of submicron GaN islands on GaN-sapphire, AlN-sapphire, and bare sapphire substrates. It is shown that strain due to the lattice mismatch between GaN and the underlying substrate has a significant influence on the final morphology and faceting of submicron islands. Under identical metalorganic chemical vapor deposition growth parameters, islands with low or no mismatch strain exhibit pyramidal morphologies, while highly strained islands evolve into prismatic shapes. Furthermore, islands grown with relatively low compressive mismatch strain yield more uniform arrays of pyramids as compared to the nonstrained, homoepitaxially grown crystals. It is proposed that the strain dependency of Ehrlich-Schwoebel barriers across different crystallographic planes could potentially account for the observed morphologies during selective area growth of GaN islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.