The rapid growth of genomic data has led to a new research paradigm where data are stored centrally in Trusted Research Environments (TREs) such as the All of Us Researcher Workbench (RW) and the UK Biobank Research Analysis Platform (RAP). To characterize the advantages and drawbacks of different TRE attributes in facilitating cross-cohort analysis, we conducted a Genome-Wide Association Study (GWAS) of standard lipid measures on the UKB RAP and AoU RW using two approaches: meta-analysis and pooled analysis. We curated lipid measurements for 37,754 All of Us participants with whole genome sequence (WGS) data and 190,982 UK Biobank participants with whole exome sequence (WES) data. For the meta-analysis, we performed a GWAS of each cohort in their respective platform and meta-analyzed the results. We separately performed a pooled GWAS on both datasets combined. We identified 454 and 445 significant variants in meta-analysis and pooled analysis, respectively. Comparison of full summary data from both meta-analysis and pooled analysis with an external study showed strong correlation of known loci with lipid levels (R2~91-98%). Importantly, 84 variants met the significance threshold only in the meta-analysis and 75 variants were significant only in pooled analysis. These method-specific differences may be explained by differences in cohort size, ancestry, and phenotype distributions in All of Us and UK Biobank. Importantly, we noted a significant increase in the proportion of significant variants predominantly from non-European ancestry individuals in the pooled analysis compared to meta-analysis (p=0.01). Pooled analysis required about half as many computational steps as meta-analysis. These findings have important implications for both platform implementations and researchers undertaking large-scale cross-cohort analyses, as technical and policy choices lead to cross-cohort analyses generating similar, but not identical results, particularly for non-European ancestral populations.
Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce. Despite this difficulty, the urgent public health considerations around Long COVID make it especially important to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made available to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an ML-based phenotype to identify patients highly probable to have Long COVID. Supported by RECOVER, N3C and NIH’s All of Us study partnered to reproduce the output of N3C’s trained model in the All of Us data enclave, demonstrating model extensibility in multiple environments. This case study in ML-based phenotype reuse illustrates how open-source software best practices and cross-site collaboration can de-black-box phenotyping algorithms, prevent unnecessary rework, and promote open science in informatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.