Nitric oxide (NO), a multifaceted bioregulatory agent and an environmental pollutant, can also cause genomic alterations. In vitro, NO deaminated deoxynucleosides, deoxynucleotides, and intact DNA at physiological pH. That similar DNA damage can also occur in vivo was tested by treating Salmonella typhimurium strain TA1535 with three NO-releasing compounds, including nitroglycerin. All proved mutagenic. Observed DNA sequence changes were greater than 99% C----T transitions in the hisG46 (CCC) target codon, consistent with a cytosine-deamination mechanism. Because exposure to endogenously and exogenously produced NO is extensive, this mechanism may contribute to the incidence of deamination-related genetic disease and cancer.
Selected nucleophile/nitric oxide adducts [compounds which contain the anionic moiety, XN(O-)N = O] were studied for their ability to release nitric oxide spontaneously in aqueous solution and for possible vasoactivity. The diversity of structures chosen included those in which the nucleophile residue, X, was that of a secondary amine [Et2N, as in [Et2NN(N = O)O]Na, 1], a primary amine [iPrHN, as in [iPrHNN(N = O)O]Na, 2], a polyamine, spermine [as in the zwitterion H2N(CH2)3NH2+(CH2)4N[N(N = O)O-](CH2)3NH2, 3], oxide [as in Na[ON(N = O)O]Na, 4], and sulfite [as in NH4[O3SN(N = O)O]NH4, 5]. The rate constants (k) for decomposition in pH 7.4 phosphate buffer at 37 degrees C, as measured by following loss of chromophore at 230-260 nm, were as follows: 1, 5.4 x 10(-3) s-1; 2, 5.1 x 10(-3) s-1; 3, 0.30 x 10(-3) s-1; 4, 5.0 x 10(-3) s-1; and 5, 1.7 x 10(-3) s-1. The corresponding extents of nitric oxide release (ENO) were 1.5, 0.73, 1.9, 0.54, and 0.001 mol/mol of starting material consumed, respectively, as determined from the integrated chemiluminescence response. Vasodilatory activities expressed as the concentrations required to induce 50% relaxation in norepinephrine-constricted aortic rings bathed in pH 7.4 buffer at 37 degrees C (EC50) were as follows: 1, 0.19 microM; 2, 0.45 microM; 3, 6.2 microM; 4, 0.59 microM; and 5, 62 microM. Vasorelaxant potency (expressed as 1/EC50) was strongly correlated with the quantity of .NO calculated from the physicochemical data to be released in the interval required to achieve maximum relaxation at the EC50 doses (r = 0.995). This suggests that such nucleophile/.NO adducts might generally be useful as vehicles for the nonenzymatic generation of nitric oxide, in predictable amounts and at predictable rates, for biological purposes. The particular significance for possible drug design is underscored in the very favorable potency comparison between several of these agents and the established nitrovasodilators sodium nitroprusside and glyceryl trinitrate (EC50 values of 2.0 and greater than 10 microM, respectively) in parallel aortic ring tests.
Infection of cereal grains with Fusarium species can cause contamination with mycotoxins that affect human and animal health. To determine the potential for mycotoxin contamination, we isolated Fusarium species from samples of rice seeds that were collected in 1997 on farms in the foothills of the Nepal Himalaya. The predominant Fusarium species in surface-disinfested seeds with husks were species of the Gibberella fujikuroi complex, including G. fujikuroi mating population A (anamorph, Fusarium verticillioides), G. fujikuroi mating population C (anamorph, Fusarium fujikuroi), and G. fujikuroi mating population D (anamorph, Fusarium proliferatum). The widespread occurrence of mating population D suggests that its role in the complex symptoms of bakanae disease of rice may be significant. Other common species were Gibberella zeae (anamorph, Fusarium graminearum) and Fusarium semitectum, with Fusarium acuminatum, Fusarium anguioides, Fusarium avenaceum, Fusarium chlamydosporum, Fusarium equiseti, and Fusarium oxysporum occasionally present. Strains of mating population C produced beauvericin, moniliformin, and gibberellic acid, but little or no fumonisin, whereas strains of mating population D produced beauvericin, fumonisin, and, usually, moniliformin, but no gibberellic acid. Some strains of G. zeae produced the 8-ketotrichothecene nivalenol, whereas others produced deoxynivalenol. Despite the occurrence of fumonisin-producing strains of mating population D, and of 8-ketotrichothecene-producing strains of G. zeae, Nepalese rice showed no detectable contamination with these mycotoxins. Effective traditional practices for grain drying and storage may prevent contamination of Nepalese rice with Fusarium mycotoxins.
Fusarium verticillioides (Sacc.) Nirenberg (synonym F. moniliforme Sheldon) (teleomorph: Gibberella moniliformis) and F. proliferatum (Matsushima) Nirenberg (teleomorph: G. intermedia) are fungal pathogens of maize (Zea mays L.) that cause ear rot and contaminate grain with fumonisins, mycotoxins that can harm animals and humans. The objective of this study was to identify quantitative trait loci (QTL) for resistance to Fusarium ear rot and fumonisin contamination in two maize populations, comprised of 213 BC1F1:2 families from the first backcross of GE440 to FR1064 (GEFR) and 143 recombinant inbred lines from the cross of NC300 to B104 (NCB). QTL mapping was used to study the genetic relationships between resistances to ear rot and fumonisin contamination and to investigate consistency of QTL across populations. In the GEFR population, seven QTL explained 47% of the phenotypic variation for mean ear rot resistance and nine QTL with one epistatic interaction explained 67% of the variation for mean fumonisin concentration. In the NCB population, five QTL explained 31% of the phenotypic variation for mean ear rot resistance and six QTL and three epistatic interactions explained 81% of the phenotypic variation for mean fumonisin concentration. Eight QTL in the GEFR population and five QTL in the NCB population affected both disease traits. At least three ear rot and two fumonisin contamination resistance QTL mapped to similar positions in the two populations. Two QTL, localized to chromosomes four and five, appeared to be consistent for both traits across both populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.