This paper deals with control of mRNA levels, assayed by in vitro translation, in cells infected with herpes simplex virus type 1 (HSV-1). A particularly useful marker has been pyrimidine deoxyribonucleoside kinase (dPyK) mRNA, for which the enzymatically active product can be assayed quantitatively. Cells infected with the HSV-1 temperature-sensitive mutant tsK at the nonpermissive temperature (38.5°C) or with wild-type HSV-1 in the continuous presence of cycloheximide contained no detectable dPyK mRNA. Upon temperature shiftdown of tsK-infected cells to 31°C, dPyK mRNA was produced, and this event was inhibited by actinomycin D but not cycloheximide. This result demonstrated that the defective polypeptide in tsK-infected cells was involved in transcription of the dPyK gene and could regain activity at 31°C. Because tsK-infected cells synthesized mainly immediate early polypeptides at 38.5°C, the involvement of this polypeptide class in synthesis of dPyK mRNA was investigated. Analysis of the kinetics of induction of dPyK mRNA indicated that the temperature-sensitive lesion in tsK lies in an immediate early polypeptide which is directly responsible for activation of the dPyK gene at the transcriptional level.
The mechanism controlling the exit from herpes simplex virus latency (HSV) is of
central importance to recurrent disease and transmission of infection, yet
interactions between host and viral functions that govern this process remain
unclear. The cascade of HSV gene transcription is initiated by the
multifunctional virion protein VP16, which is expressed late in the viral
replication cycle. Currently, it is widely accepted that VP16 transactivating
function is not involved in the exit from latency. Utilizing the mouse ocular
model of HSV pathogenesis together with genetically engineered viral mutants and
assays to quantify latency and the exit from latency at the single neuron level,
we show that in vivo (i) the VP16 promoter confers distinct regulation critical
for viral replication in the trigeminal ganglion (TG) during the acute phase of
infection and (ii) the transactivation function of VP16 (VP16TF) is uniquely
required for the exit from latency. TG neurons latently infected with the VP16TF
mutant in1814 do not express detectable viral proteins following stress, whereas
viruses with mutations in the other major viral transcription regulators ICP0
and ICP4 do exit the latent state. Analysis of a VP16 promoter/reporter mutant
in the background of in1814 demonstrates that the VP16 promoter is activated in
latently infected neurons following stress in the absence of other viral
proteins. These findings support the novel hypothesis that de novo expression of
VP16 regulates entry into the lytic program in neurons at all phases of the
viral life cycle. HSV reactivation from latency conforms to a model in which
stochastic derepression of the VP16 promoter and expression of VP16 initiates
entry into the lytic cycle.
The human cytomegalovirus (HCMV) tegument protein pp71, encoded by gene UL82, stimulates viral immediate-early (IE) transcription. pp71 interacts with the cellular protein hDaxx at nuclear domain 10 (ND10) sites, resulting in the reversal of hDaxx-mediated repression of viral transcription. We demonstrate that pp71 displaces an hDaxx-binding protein, ATRX, from ND10 prior to any detectable effects on hDaxx itself and that this event contributes to the role of pp71 in alleviating repression. Introduction of pp71 into cells by transfection, infection with a pp71-expressing herpes simplex virus type 1 vector, or by generation of transformed cell lines promoted the rapid relocation of ATRX from ND10 to the nucleoplasm without alteration of hDaxx levels or localization. A pp71 mutant protein unable to interact with hDaxx did not affect the intranuclear distribution of ATRX. Infection with HCMV at a high multiplicity of infection resulted in rapid displacement of ATRX from ND10, the effect being observed maximally by 2 h after adsorption, whereas infection with the UL82-null HCMV mutant ADsubUL82 did not affect ATRX localization even at 7 h postinfection. Cell lines depleted of ATRX by transduction with shRNA-expressing lentiviruses supported increased IE gene expression and virus replication after infection with ADsubUL82, demonstrating that ATRX has a role in repressing IE transcription. The results show that ATRX, in addition to hDaxx, is a component of cellular intrinsic defenses that limit HCMV IE transcription and that displacement of ATRX from ND10 by pp71 is important for the efficient initiation of viral gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.