Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep , an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than commonly used preprocessing tools. FMRIPrep equips neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of their results.
Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data 24Preprocessing of fMRI in a nutshell, for a summary). Extracting a signal that is most faithful to the 25 underlying neural activity is crucial to ensure the validity of inference and interpretability of results 6 .
The sharing of research data is essential to ensure reproducibility and maximize the impact of public investments in scientific research. Here we describe OpenNeuro, a BRAIN Initiative data archive that provides the ability to openly share data from a broad range of brain imaging data types following the FAIR principles for data sharing. We highlight the importance of the Brain Imaging Data Structure (BIDS) standard for enabling effective curation, sharing, and reuse of data. The archive presently shares more than 600 datasets including data from more than 20,000 participants, comprising multiple species and measurement modalities and a broad range of phenotypes. The impact of the shared data is evident in a growing number of published reuses, currently totalling more than 150 publications. We conclude by describing plans for future development and integration with other ongoing open science efforts.
Brain imaging researchers regularly work with large, heterogeneous, high-dimensional datasets. Historically, researchers have dealt with this complexity idiosyncratically, with every lab or individual implementing their own preprocessing and analysis procedures. The resulting lack of field-wide standards has severely limited reproducibility and data sharing and reuse.To address this problem, we and others recently introduced the Brain Imaging Data Standard (BIDS; (Gorgolewski et al., 2016)), a specification meant to standardize the process of representing brain imaging data. BIDS is deliberately designed with adoption in mind; it adheres to a user-focused philosophy that prioritizes common use cases and discourages complexity. By successfully encouraging a large and ever-growing subset of the community to adopt a common standard for naming and organizing files, BIDS has made it much easier for researchers to share, re-use, and process their data .The ability to efficiently develop high-quality spec-compliant applications itself depends to a large extent on the availability of good tooling. Because many operations recur widely across diverse contexts-for example, almost every tool designed to work with BIDS datasets involves regular file-filtering operations-there is a strong incentive to develop utility libraries that provide common functionality via a standardized, simple API.PyBIDS is a Python package that makes it easier to work with BIDS datasets. In principle, its scope includes virtually any functionality that is likely to be of general use when working with BIDS datasets (i.e., that is not specific to one narrow context). At present, its core and most widely used module supports simple and flexible querying and manipulation of BIDS datasets. PyBIDS makes it easy for researchers and developers working in Python to search for BIDS files by keywords and/or metadata; to consolidate and retrieve file-associated metadata spread out across multiple levels of a BIDS hierarchy; to construct BIDS-valid path names for new files; and to validate projects against the BIDS specification, among other applications.
Functional magnetic resonance imaging (fMRI) is widely used to investigate the neural correlates of cognition. fMRI non-invasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time-consuming, error-prone, and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep , a robust preprocessing tool for virtually any human BOLD (blood-oxygen level dependent) fMRI dataset that addresses the reproducibility concerns of the established protocols for fMRI preprocessing. Based on standardizations of the input and output data specifications, fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep , this protocol describes how to integrate the tool in a task-based fMRI investigation workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.