Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
Benign familial neonatal convulsions (BFNC) is a rare autosomal dominant generalized epilepsy of the newborn infant. Seizures occur repeatedly in the first days of life and remit by approximately 4 months of age. Previously our laboratory cloned two novel potassium channel genes, KCNQ2 and KCNQ3, and showed that they are mutated in patients with BFNC. In this report, we characterize the breakpoints of a previously reported interstitial deletion in the KCNQ2 gene and show that only KCNQ2 is deleted. We identify 11 novel mutations in KCNQ2 and one novel mutation in the KCNQ3 potassium channel genes. In one family, the phenotype extends beyond neonatal seizures and includes rolandic seizures, and a subset of families has onset of seizures in infancy. In the Xenopus oocyte expression system, we characterize five KCNQ2 and one KCNQ3 disease-causing mutations. These mutations cause a variable loss of function, and selective effects on the biophysical properties of KCNQ2/KCNQ3 heteromultimeric channels. We report here the first dominant negative mutation in KCNQ2 that has a phenotype of neonatal seizures without permanent clinical CNS impairment.
A follow-up study of a large Utah family with significant linkage to chromosome 2q24 led us to identify a new febrile seizure (FS) gene, SCN9A encoding Nav1.7. In 21 affected members, we uncovered a potential mutation in a highly conserved amino acid, p.N641Y, in the large cytoplasmic loop between transmembrane domains I and II that was absent from 586 ethnically matched population control chromosomes. To establish a functional role for this mutation in seizure susceptibility, we introduced the orthologous mutation into the murine Scn9a ortholog using targeted homologous recombination. Compared to wild-type mice, homozygous Scn9a N641Y/N641Y knockin mice exhibit significantly reduced thresholds to electrically induced clonic and tonic-clonic seizures, and increased corneal kindling acquisition rates. Together, these data strongly support the SCN9A p.N641Y mutation as disease-causing in this family. To confirm the role of SCN9A in FS, we analyzed a collection of 92 unrelated FS patients and identified additional highly conserved Nav1.7 missense variants in 5% of the patients. After one of these children with FS later developed Dravet syndrome (severe myoclonic epilepsy of infancy), we sequenced the SCN1A gene, a gene known to be associated with Dravet syndrome, and identified a heterozygous frameshift mutation. Subsequent analysis of 109 Dravet syndrome patients yielded nine Nav1.7 missense variants (8% of the patients), all in highly conserved amino acids. Six of these Dravet syndrome patients with SCN9A missense variants also harbored either missense or splice site SCN1A mutations and three had no SCN1A mutations. This study provides evidence for a role of SCN9A in human epilepsies, both as a cause of FS and as a partner with SCN1A mutations.
The childhood epilepsy syndrome of benign familial neonatal convulsions (BFNC) exhibits the remarkable feature of clinical remission within a few weeks of onset and a favourable prognosis, sparing cognitive abilities despite persistent expression of the mutant KCNQ2 or KCNQ3 potassium channels throughout adulthood. To better understand such dynamic neuroprotective plasticity within the developing brain, we introduced missense mutations that underlie human BFNC into the orthologous murine Kcnq2 (Kv7.2) and Kcnq3 (Kv7.3) genes. Mutant mice were examined for altered thresholds to induced seizures, spontaneous seizure characteristics, hippocampal histology, and M-current properties of CA1 hippocampal pyramidal neurons. Adult Kcnq2A306T/+ and Kcnq3 G311V/+ heterozygous knock-in mice exhibited reduced thresholds to electrically induced seizures compared to wild-type littermate mice. Both Kcnq2 A306T/A306Tand Kcnq3 G311V/G311V homozygous mutant mice exhibited early onset spontaneous generalized tonic-clonic seizures concurrent with a significant reduction in amplitude and increased deactivation kinetics of the neuronal M-current. Mice had recurrent seizures into adulthood that triggered molecular plasticity including ectopic neuropeptide Y (NPY) expression in granule cells, but without hippocampal mossy fibre sprouting or neuronal loss. These novel knockin mice recapitulate proconvulsant features of the human disorder yet show that inherited M-current defects spare granule cells from reactive changes in adult hippocampal networks. The absence of seizure-induced pathology found in these epileptic mouse models parallels the benign neurodevelopmental cognitive profile exhibited by the majority of BFNC patients. Benign familial neonatal convulsions (BFNC [MIM 121200,121201]) is an autosomal dominantly inherited epileptic disorder in which newborns experience several daily partial or generalized seizures during wakefulness and sleep (Rett & Teubel, 1964;Ryan et al. 1991;Ronen et al. 1993). In the majority of cases, seizures spontaneously remit by 3-4 months yet 16% of BFNC individuals continue to experience one or more seizures during adulthood (Ronen et al. 1993;Singh et al. 2003). Mutations in either of two homologous potassium channel genes, This paper has online supplemental material.KCNQ2 and KCNQ3, have been found in patients with BFNC (Biervert et al. 1998;Charlier et al. 1998;Singh et al. 1998;Lucarini et al. 2007). The protein products of these genes colocalize and generate the M-current, a critical regulator of action potential firing and neuronal excitability (Wang et al. 1998).An intriguing phenotypic trait of BFNC is that the frequent spontaneous seizures exhibited by the neonates are not generally associated with any developmental sequelae (Ryan et al. 1991;Ronen et al. 1993). This is in stark contrast to malignant early childhood onset convulsive seizure disorders that can produce neuronal death and synaptic reorganization with subsequent (Ben-Ari & Holmes, 2006;Blume, 2006). A biological mechanism that exp...
Febrile seizures are the most common form of childhood seizures, occurring in 2% to 5% of North American children. We report a large Utah family with 21 members affected by febrile seizures inherited as an autosomal dominant trait. All had generalized tonic–clonic seizures with onset associated with fever, consistent with the consensus febrile seizure phenotype, and none had febrile seizures beyond 6 years of age. Eighteen affected individuals had recurrent febrile seizures. Eight individuals developed afebrile seizures between ages 5 and 13 years. Afebrile seizures consisted of generalized tonic–clonic, generalized tonic, generalized atonic, simple partial, and partial complex seizure types and were associated with abnormal electroencephalographic findings in 5 individuals, all of whom were intellectually normal. We undertook linkage analysis in this family, defining the disease phenotype as febrile seizures alone. Linkage analysis in epilepsy candidate gene/loci regions failed to show evidence for linkage to febrile seizures. However, a genomewide scan and subsequent fine mapping revealed significant evidence for a new febrile seizure locus (FEB3) on chromosome 2q23‐24 with linkage to the marker D2S2330 (LOD score 8.08 at θ = 0.001). Haplotype analysis defined a critical 10‐cM region between markers D2S141 and D2S2345 that contains the FEB3 locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.