We show how to construct a variety of "trapdoor" cryptographic tools assuming the worst-case hardness of standard lattice problems (such as approximating the length of the shortest nonzero vector to within certain polynomial factors). Our contributions include a new notion of preimage sampleable functions, simple and efficient "hash-and-sign" digital signature schemes, and identity-based encryption.A core technical component of our constructions is an efficient algorithm that, given a basis of an arbitrary lattice, samples lattice points from a discrete Gaussian probability distribution whose standard deviation is essentially the length of the longest Gram-Schmidt vector of the basis. A crucial security property is that the output distribution of the algorithm is oblivious to the particular geometry of the given basis.
We give new methods for generating and using "strong trapdoors" in cryptographic lattices, which are simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal with very small hidden constants. Our methods involve a new kind of trapdoor, and include specialized algorithms for inverting LWE, randomly sampling SIS preimages, and securely delegating trapdoors. These tasks were previously the main bottleneck for a wide range of cryptographic schemes, and our techniques substantially improve upon the prior ones, both in terms of practical performance and quality of the produced outputs. Moreover, the simple structure of the new trapdoor and associated algorithms can be exposed in applications, leading to further simplifications and efficiency improvements. We exemplify the applicability of our methods with new digital signature schemes and CCA-secure encryption schemes, which have better efficiency and security than the previously known lattice-based constructions. 1 Introduction Cryptography based on lattices has several attractive and distinguishing features:-On the security front, the best attacks on the underlying problems require exponential 2 Ω(n) time in the main security parameter n, even for quantum adversaries. By constrast, for example, mainstream factoring-based cryptography can be broken in subexponential 2Õ (n 1/3) time classically, and even in polynomial n O(1) time using quantum algorithms. Moreover, lattice cryptography is supported by strong worst-case/average-case security reductions, This material is based on research sponsored by NSF under Award CNS-1117936 and DARPA under agreement number FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The “learning with errors” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash functions (and related primitives). We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-LWE , and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of LWE can be made much more efficient through the use of ring-LWE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.