This study aimed to develop a methodology for accurate determination of the impact location of a cricket ball on the bat face, as well as the identification of bat-ball contact timing and post-impact instantaneous ball velocity in a whole body kinematic data collection environment. Three-dimensional kinematic data of bat and ball were recorded during fourteen batting strokes; eight hitting a static ball and six against a bowling machine. Curves were fitted separately to the pre-and post-impact phases of the ball position data against time in three axes according to logarithmic equations determined from mechanical principles. Separate Fourier series models were similarly fitted to the four corners of the bat face against time during the downswing prior to ball impact. Time of impact for the dynamic ball trials was determined based upon the intersection of preand post-impact curves, with impact location calculated from ball and bat face curves at this time. R 2 values for the goodness of fit of the ball and bat curves averaged 0.99 ± 0.04 and 1.00 ± 0.00 with root mean square errors of 7.5 ± 2.6 and 0.8 ± 0.2 mm, respectively. Calculated impact locations were assessed against measured impact locations derived from the impression imparted to a fine powder coating on the bat face, finding absolute differences of 6.4 ± 4.2 and 7.1 ± 4.4 mm in the transverse and longitudinal axes of the bat, respectively. Thus, an automated curve fitting methodology enables the accurate determination of cricket bat-ball impact characteristics for use in experimental investigations.
The ability of a batsman to clear the boundary is a major contributor to success in modern cricket. The aim of this study was to identify technique parameters characterising those batsmen able to generate greater bat speeds, ball launch speeds, and carry distances during a range hitting task in cricket. Kinematic data were collected for 20 batsmen ranging from international to club standard, and a series of ball launch, bat-ball impact, and technique parameters were calculated for each trial. A stepwise multiple linear regression analysis found impact location on the bat face in the medio-lateral and longitudinal directions and bat speed at impact to explain 68% of the observed variation in instantaneous post-impact ball speed. A further regression analysis found the X-factor (separation between the pelvis and thorax segments in the transverse plane) at the commencement of the downswing, lead elbow extension, and wrist uncocking during the downswing to explain 78% of the observed variation in maximum bat speed during the downswing. These findings indicate that players and coaches should focus on generating central impacts with the highest possible bat speed. Training and conditioning programmes should be developed to improve the important kinematic parameters shown to generate greater bat speeds, particularly focussing on increased pelvis to upper thorax separation in the transverse plane.
The aim of this paper was to examine differences in delivery characteristics and the resulting response exhibited by ten elite cricket batsmen when hitting repeated front foot drives against three different ball delivery methods; a bowling machine, a Sidearm™ ball thrower and a bowler. Synchronous three-dimensional Vicon motion capture technology and high-speed video were used to track batsman, bat and ball motion, and a range of discrete timing and kinematic variables were extracted from the resulting biomechanical model. Results showed significant differences in speed and ball release-to-impact time between the three delivery methods, thus questioning the validity of the bowling machine and Sidearm™ in the way they are currently used as true representations of batting against a real life bowler. Findings from the timing and kinematics of the subjects' movements suggest a different technical response is also exhibited when facing the different delivery methods; for example batters were found to initiate movement earlier and have a lower maximum bat speed against the bowling machine, but initiate and complete their front foot stride earlier as well as moving their COM further forward in the Sidearm™ trials.
Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A "sweet region" on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.
Organismic, task, and environmental constraints are known to differ between skilled male and female cricket batters during power hitting tasks. Despite these influences, the techniques used in such tasks have only been investigated in male cricket batters. This study compared power hitting kinematics between 15 male and 15 female batters ranging from university to international standard. General linear models were used to assess the effect of gender on kinematic parameters describing technique, with height and body mass as covariates. Male batters generated greater maximum bat speeds, ball launch speeds, and ball carry distances than female batters on average. Male batters had greater pelvis-thorax separation in the transverse plane at the commencement of the downswing (β = 1.14; p = 0.030) and extended their lead elbows more during the downswing (β = 1.28; p = 0.008) compared to female batters. The hypothesised effect of gender on the magnitude of wrist uncocking during the downswing was not observed (β = −0.14; p = 0.819). The causes of these differences are likely to be multi-factorial, involving aspects relating to the individual players, their history of training experiences and coaching practices, and the task of power hitting in male or female cricket.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.