Olfactory ensheathing cells transplanted into the injured spinal cord in animals promote regeneration and remyelination of descending motor pathways through the site of injury and the return of motor functions. In a single-blind, Phase I clinical trial, we aimed to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the injured spinal cord in human paraplegia. Participants were three male paraplegics, 18-55 years of age, with stable, complete thoracic injuries 6-32 months previously, with stable spinal column, no implanted prostheses, and no syrinx. Olfactory ensheathing cells were grown and purified in vitro from nasal biopsies and injected into the region of damaged spinal cord. The trial design includes a matched injury group as a control for the assessors, who are blind to treatment status. Assessments, made before transplantation and at regular intervals subsequently, include MRI, medical, neurological and psychosocial assessments, and standard American Spinal Injury Association and Functional Independence Measure assessments. One year after cell implantation, there were no medical, surgical or other complications to indicate that the procedure is unsafe. There is no evidence of spinal cord damage nor of cyst, syrinx or tumour formation. There was no neuropathic pain reported by the participants, no change in psychosocial status and no evidence of deterioration in neurological status. Participants will be followed for 3 years to confirm long-term safety and to compare neurological, functional and psychosocial outcomes with the control group. We conclude transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is safe up to one year post-implantation.
Multipotent stem cells are thought to be responsible for the generation of new neurons in the adult brain. Neurogenesis also occurs in an accessible part of the nervous system, the olfactory mucosa. We show here that cells from human olfactory mucosa generate neurospheres that are multipotent in vitro and when transplanted into the chicken embryo. Cloned neurosphere cells show this multipotency. Multipotency was evident without prior culture in vitro: cells dissociated from adult rat olfactory mucosa generate leukocytes when transplanted into bone marrow-irradiated hosts, and cells dissociated from adult mouse olfactory epithelium generated numerous cell types when transplanted into the chicken embryo. It is unlikely that these results can be attributed to hematopoietic precursor contamination or cell fusion. These results demonstrate the existence of a multipotent stem-like cell in the olfactory mucosa useful for autologous transplantation therapies and for cellular studies of disease. Developmental Dynamics 233:496 -515, 2005.
Olfactory ensheathing cells show promise in preclinical animal models as a cell transplantation therapy for repair of the injured spinal cord. This is a report of a clinical trial of autologous transplantation of olfactory ensheathing cells into the spinal cord in six patients with complete, thoracic paraplegia. We previously reported on the methods of surgery and transplantation and the safety aspects of the trial 1 year after transplantation. Here we address the overall design of the trial and the safety of the procedure, assessed during a period of 3 years following the transplantation surgery. All patients were assessed at entry into the trial and regularly during the period of the trial. Clinical assessments included medical, psychosocial, radiological and neurological, as well as specialized tests of neurological and functional deficits (standard American Spinal Injury Association and Functional Independence Measure assessments). Quantitative test included neurophysiological tests of sensory and motor function below the level of injury. The trial was a Phase I/IIa design whose main aim was to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the injured spinal cord in human paraplegia. The design included a control group who did not receive surgery, otherwise closely matched to the transplant recipient group. This group acted as a control for the assessors, who were blind to the treatment status of the patients. The control group also provided the opportunity for preliminary assessment of the efficacy of the transplantation. There were no adverse findings 3 years after autologous transplantation of olfactory ensheathing cells into spinal cords injured at least 2 years prior to transplantation. The magnetic resonance images (MRIs) at 3 years showed no change from preoperative MRIs or intervening MRIs at 1 and 2 years, with no evidence of any tumour of introduced cells and no development of post-traumatic syringomyelia or other adverse radiological findings. There were no significant functional changes in any patients and no neuropathic pain. In one transplant recipient, there was an improvement over 3 segments in light touch and pin prick sensitivity bilaterally, anteriorly and posteriorly. We conclude that transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is safe up to 3 years of post-implantation, however, this conclusion should be considered preliminary because of the small number of trial patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.