Background Plants alter their environment in a number of ways. With correct management, plant communities can positively impact soil degradation processes such as surface erosion and shallow landslides. However, there are major gaps in our understanding of physical and ecological processes on hillslopes, and the application of research to restoration and engineering projects.Scope To identify the key issues of concern to researchers and practitioners involved in designing and implementing projects to mitigate hillslope instability, we organized a discussion during the From this discussion, ten key issues were identified, considered as the kernel of future studies concerning the impact of vegetation on slope stability and erosion processes. Each issue is described and a discussion at the end of this paper addresses how we can augment the use of ecological engineering techniques for mitigating slope instability. Conclusions We show that through fundamental and applied research in related fields (e.g., soil formation and biogeochemistry, hydrology and microbial ecology), reliable data can be obtained for use by practitioners seeking adapted solutions for a given site. Through fieldwork, accessible databases, modelling and collaborative projects, awareness and acceptance of the use of plant material in slope restoration projects should increase significantly, particularly in the civil and geotechnical communities.
The water quality impact of a herd of 246 dairy cows crossing a stream ford was documented. Two cow crossings produced plumes of turbid water associated with very high concentrations of faecal indicator bacteria (Escherichia coli) and high suspended solids (SS) and total nitrogen (TN). On the first crossing, towards the milking shed, the cows were tightly-bunched and produced a sharp spike of contamination (E. coli peaking at 50 000 cfu/100 ml). After milking, the cows wandered back across the stream as individuals or small groups, and contaminants were less elevated, albeit for a longer period. Light attenuation, measured continuously by beam transmissometer, correlated closely with E. coli, SS, and TN, permitting the total yield of these contaminants to be estimated. Contaminant yields for M04005; Online publication date
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.