We present the full source catalogue from the Australia Telescope 20 GHz (AT20G) Survey. The AT20G is a blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array (ATCA) from 2004 to 2008, and covers the whole sky south of declination 0 • . The AT20G source catalogue presented here is an order of magnitude larger than any previous catalogue of high-frequency radio sources, and includes 5890 sources above a 20 GHz flux-density limit of 40 mJy. All AT20G sources have total intensity and polarization measured at 20 GHz, and most sources south of declination −15 • also have near-simultaneous flux-density measurements at 5 and 8 GHz. A total of 1559 sources were detected in polarized total intensity at one or more of the three frequencies.The completeness of the AT20G source catalogue is 91 per cent above 100 mJy beam −1 and 79 per cent above 50 mJy beam −1 in regions south of declination −15 • . North of −15 • , some observations of sources between 14 and 20 h in right ascension were lost due to bad weather and could not be repeated, so the catalogue completeness is lower in this region. Each detected source was visually inspected as part of our quality control process, and so the reliability of the final catalogue is essentially 100 per cent.We detect a small but significant population of non-thermal sources that are either undetected or have only weak detections in low-frequency catalogues. We introduce the term Ultra-Inverted Spectrum to describe these radio sources, which have a spectral index α(5, 20) > +0.7 and which constitute roughly 1.2 per cent of the AT20G sample.
Fast Radio Bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Non-repeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single pulse FRB 180924 to a position 4 kpc from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web.Cosmological observations have shown that baryons comprise 4% of the energy density of the Universe, of which only about 10% is in cold gas and stars (1), with the remainder residing in a diffuse plasma surrounding and in between galaxies and galaxy clusters. The location and density of this material has been challenging to characterize, and up to 50% of it remains unaccounted (2).Fast radio bursts (FRBs; ref.(3)) are bright bursts of radio waves with millisecond duration. They can potentially be used to detect, study, and map this medium, as bursts of emission are dispersed and scattered by their 1 arXiv:1906.11476v1 [astro-ph.HE] 27 Jun 2019 dual-polarization beams on the sky using digital beamforming, producing a total field-of-view of ∼ 30 deg 2 . For burst detection, the beamformers produces channelized autocorrelation spectra for both linear polarizations of all beams, with an integration time of 864 µs and channel bandwidth of 1 MHz in these observations. We used 336 channels centered at 1320 MHz. A real-time detection pipeline incoherently adds the spectra from all available antennas (24 antennas in these observations) and polarization channels, then searches (16) the result for dispersed pulses (17).Burst localization is completed with a second data product that utilizes both the amplitude and phase information of the burst radiation. The beamformers store samples of the complex electric field for all beams and both polarizations in a ring buffer of 3.1 s duration, with the oldest data being continuously overwritten by new data. The data are saved for offline interferometric analysis only when the pipeline identifies a candidate. For the searches reported here the triggering required pulses with widths less than 9 ms and S/N > 10.Previous searches with ASKAP used antennas pointed in different directions to maximize sky coverage (10,16). In contrast, our observations used antennas all pointed in the same direction, enabling the array to act as an interferometer capable of sub-arcsecond localization with a 30 deg 2 field of view. We targeted high Galactic latitude fields (Galactic latitude |b| ∼ 50 • ), that had been observed previously (10, 16), and Southern circumpolar fields. The high-latitude fields were observed regularly through 2017 and earl...
Software correlation, where a correlation algorithm written in a high-level language such as C++ is run on commodity computer hardware, has become increasingly attractive for small to medium sized and/or bandwidth constrained radio interferometers. In particular, many long baseline arrays (which typically have fewer than 20 elements and are restricted in observing bandwidth by costly recording hardware and media) have utilized software correlators for rapid, costeffective correlator upgrades to allow compatibility with new, wider bandwidth recording systems and improve correlator flexibility. The DiFX correlator, made publicly available in 2007, has been a popular choice in such upgrades and is now used for production correlation by a number of observatories and research groups worldwide. Here we describe the evolution in the capabilities of the DiFX correlator over the past three years, including a number of new capabilities, substantial performance improvements, and a large amount of supporting infrastructure to ease use of the code. New capabilities include the ability to correlate a large number of phase centers in a single correlation pass, the extraction of phase calibration tones, correlation of disparate but overlapping sub-bands, the production of rapidly sampled filterbank and kurtosis data at minimal cost, and many more.The latest version of the code is at least 15% faster than the original, and in certain situations many times this value. Finally, we also present detailed test results validating the correctness of the new code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.