Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.
Hepatitis C virus (HCV) is a global health concern; recent estimates suggest that 2.2 to 3% of the world's population, equivalent to 130 to 170 million individuals, are chronically infected with the virus (13, 31). These patients are at risk of developing debilitating liver diseases such as cirrhosis and hepatocellular carcinoma (1). Furthermore, current models suggest that the burden of HCV-associated disease is set to rise for the next 20 years (6). There is no HCV vaccine; the current standard of care (SOC) involves lengthy treatments with ribavirin and injected pegylated interferon, which exhibit variable efficacies and are associated with severe, and sometimes lifethreatening, side effects. Encouragingly, many direct-acting antiviral (DAA) molecules are in clinical development, and the most advanced (telaprevir and boceprevir) will probably be used to treat HCV-infected patients in 2011 (19,29,42,43,61). However, caution should be employed against overoptimism; attrition rates are high during drug development, and the first drugs will be given in combination with, not instead of, the current SOC. Therefore, the continued development of additional treatments is needed, especially since it is widely acknowledged that to limit the emergence of drug-resistant viral variants, effective therapeutic strategies for HCV will consist of multiple DAAs (50).A multitude of screening campaigns has revealed many diverse and interesting chemical compounds capable of specifically inhibiting HCV RNA replication. Many of these compounds target the HCV-encoded nonstructural (NS) proteins (NS3, NS4A, NS4B, NS5A, and NS5B), which are required for HCV genome synthesis (3, 37). To instigate HCV genome replication, the NS proteins interact with viral genomes and certain host-encoded factors to form multiprotein assemblies termed "replication complexes" (RCs), which are sites of viral RNA synthesis derived from the endoplasmic reticulum (ER) (8,14,45,53). In HCV-infected cells, RCs are juxtaposed to intracellular lipid storage organelles termed lipid droplets (LDs), which are coated with the HCV capsid protein (core) and probably serve as platforms to accept replicated genomes from RCs to initiate virion assembly (26,44,53). Of considerable interest are inhibitors that target the HCV-encoded NS5A protein. These inhibitors were originally discovered from the screening of cells containing HCV subgenomic replicons against libraries of small molecules and were identified as NS5A inhibitors by utilizing a strategy termed "chemical genetics" (12, 32). NS5A-targeting inhibitors are notable for their unprecedented potency in cell-based HCV replication assays: 50% inhibitory concentrations (IC 50 s) in the low-picomolar
A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3,3-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.
We have screened 47 locked nucleic acid (LNA) antisense oligonucleotides (ASOs) targeting conserved (>95% homology) sequences in the hepatitis C virus (HCV) genome using the subgenomic HCV replicon assay and generated both antiviral (50% effective concentration [EC 50 ]) and cytotoxic (50% cytotoxic concentration [CC 50 ]) dose-response curves to allow measurement of the selectivity index (SI). This comprehensive approach has identified an LNA ASO with potent antiviral activity (EC 50 ؍ 4 nM) and low cytotoxicity (CC 50 >880 nM) targeting the 25-to 40-nucleotide region (nt) of the HCV internal ribosome entry site (IRES) containing the distal and proximal miR-122 binding sites. LNA ASOs targeting previously known accessible regions of the IRES, namely, loop III and the initiation codon in loop IV, had poor SI values. We optimized the LNA ASO sequence by performing a 1-nucleotide walk through the 25-to 40-nt region and show that the boundaries for antiviral efficacy are extremely precise. Furthermore, we have optimized the format for the LNA ASO using different gapmer and mixomer patterns and show that RNase H is required for antiviral activity. We demonstrate that RNase H-refractory ASOs targeting the 25-to 40-nt region have no antiviral effect, revealing important regulatory features of the 25-to 40-nt region and suggesting that RNase H-refractory LNA ASOs can act as potential surrogates for proviral functions of miR-122. We confirm the antisense mechanism of action using mismatched LNA ASOs. Finally, we have performed pharmacokinetic experiments to demonstrate that the LNA ASOs have a very long half-life (>5 days) and attain hepatic maximum concentrations >100 times the concentration required for in vitro antiviral activity.Hepatitis C virus (HCV) infection is a major cause of liver disease, with Ͼ170 million infected people worldwide being at risk from liver failure and hepatocarcinoma. Current standard of care (SOC) using pegylated alpha 2a interferon (IFN-␣2a)-ribavirin is failing 40 to 50% of treated HCV patients, so new therapies are urgently required. New directly acting antiviral therapies for hepatitis C are becoming available, but these will eventually fail many HCV patients due to emerging drugresistant mutations in HCV strains (6, 7). HCV genomic RNA is an attractive antiviral target because it holds genetic information for viral proteins and contains regions of highly conserved sequence required for HCV replication/translation. Many groups have identified antisense oligonucleotides (ASOs) capable of inhibiting HCV RNA replication and viral polyprotein synthesis in vitro. Clinical trials on chronically HCV-infected patients show that modified ASOs targeting HCV can result in Ͼ2-log-unit decreases in viral loads, although the mechanism driving clinical antiviral activity has yet to be fully validated as antisense (14,28,33). Moreover, locked nucleic acid (LNA) represents a new generation of ASOs with improved affinity of binding to RNA targets, increased sequence specificity, greater biostability ag...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.