We compared and integrated marine protected areas proposed through community and scientific assessments in 2 regions of British Columbia, Canada. The community priorities were identified during individual and group interviews with knowledgeable resource users. The scientific priorities were developed with abiotic and biotic data in Marxan, a decision-support tool. The resulting maps of community-based and science-based priorities were very similar for the inshore areas, which lent credibility to both approaches. The resource users thought the science-based maps were fairly good at highlighting areas important for conservation, but preferred the scenarios that integrated the 2 maps to either constituent map. Incorporating spatial variation in human impacts on the marine areas and commercial fishing, which are both costs of protection, into our Marxan analyses led to scenarios that were different from either constituent map. Our results show the value of integrating community-based and science-based approaches in conservation planning to achieve community acceptance and conservation utility. They also reveal that people's assessments on the basis of their traditional ecological knowledge may serve as a reasonable proxy for scientific approaches in selecting areas of ecological value.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
Researchers and government agencies are increasingly embracing Indigenous knowledge to inform ecological monitoring. However, there are few detailed accounts of designing monitoring methods based in Indigenous knowledge to meet Indigenous objectives. This research details the design of a program initiated by the Gitga’at First Nation to document the knowledge and observations of their harvesters as a contemporary monitoring initiative. We, Gitga’at and academic researchers, first conducted informal interviews with knowledge holders to gauge interest and to establish community objectives. We then convened community meetings and workshops to design methods to document harvesters’ knowledge and observations. We tested and revised these methods (a post-harvest season interview guide, and a logbook to be completed by harvesters) over the course of two harvest seasons. Semi-structured interviews were more successful than the logbooks in meeting multiple community monitoring objectives. However, we were encouraged by younger participants’ suggestions to develop a digital app based on the logbook to encourage future participation. Our work can serve as a guide to other Indigenous peoples and collaborators who wish to leverage the knowledge of their land and (or) sea users, and the methods we develop are available to adapt to other cultural, social-ecological, and political contexts.
1. Preserving genetic and phenotypic diversity can help safeguard not only biodiversity but also cultural and economic values. 2. Here, we present data that emerged from Indigenous‐led research at the intersection of evolution and ecology to support conservation planning of a culturally salient, economically valuable, and rare phenotypic variant. We addressed three conservation objectives for the white‐phased ‘Spirit bear’ polymorphism, a rare and endemic white‐coated phenotype of black bear (Ursus americanus) in Kitasoo/Xai'xais and Gitga'at Territories and beyond in coastal British Columbia, Canada. First, we used non‐invasively collected hair samples (n = 385 bears over ∼18,000 km2) to assess the spatial variation in the frequency of the allele that controls the white‐coloured morph (mc1r). Second, we compared our observed allele frequencies at mc1r with those expected under Hardy–Weinberg equilibrium. Finally, we examined how well current protected areas in the region aligned with spatial hotspots of Spirit bear alleles. 3. We found that landscape‐level allele frequency was lower than previously reported. For example our systematic sampling estimated a frequency of 0.25 (95% CI [0.13, 0.41]) on Gribbell Island compared with the previously reported estimate of 0.56. Also, in contrast with previous reports, we failed to detect a statistically significant departure from Hardy–Weinberg equilibrium at mc1r, which calls into question the previously posited role of homozygote gene flow, heterozygote disadvantage, and positive assortative mating in the maintenance of this polymorphism. Finally, we found a discrepancy between the placement of protected areas and the 90th percentile hotspots (upper 10% of all estimated values) of Spirit bear alleles, with ∼50% of hotspots falling outside of protected areas. 4. These results provide new insight into hypotheses related to the maintenance of this rare polymorphism, and directly relevant information to support evidence‐based opportunities for Indigenous Nations of the area to attend to gaps in conservation planning.
Community and resource user support has often been declared as essential to achieving globally agreed targets for marine protection. Given that indigenous people in Canada have resource use rights, we engaged two indigenous communities in British Columbia for their views on marine planning and protected areas. We developed a three-phased approach for executing our research: building research partnerships, carrying out individual interviews, and holding community discussion sessions. Participants expressed a common goal of recovering depleted species and ensuring the sustainability of indigenous fishing. We found strong support for spatial protection measures, and significant overlaps amongst participants in the areas suggested for protection. The most common type of protection recommended by participants was the exclusion of commercial and recreational fisheries while allowing for indigenous fishing; this stands in contrast to the emphasis on strict no-take MPAs advocated in the literature. Similarities in the goal, and level and areas of protection point to a gap in conservation approaches: the conservation of important areas and resources to indigenous people, allowing the continued practice and adaptation of their culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.