Soft constraints hypothesis (SCH) is a rational analysis approach that holds that the mixture of perceptual-motor and cognitive resources allocated for interactive behavior is adjusted based on temporal cost-benefit tradeoffs. Alternative approaches maintain that cognitive resources are in some sense protected or conserved in that greater amounts of perceptual-motor effort will be expended to conserve lesser amounts of cognitive effort. One alternative, the minimum memory hypothesis (MMH), holds that people favor strategies that minimize the use of memory. SCH is compared with MMH across 3 experiments and with predictions of an Ideal Performer Model that uses ACT-R's memory system in a reinforcement learning approach that maximizes expected utility by minimizing time. Model and data support the SCH view of resource allocation; at the under 1000-ms level of analysis, mixtures of cognitive and perceptual-motor resources are adjusted based on their cost-benefit tradeoffs for interactive behavior.
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory.
Perceptual generalization and discrimination are fundamental cognitive abilities. For example, if a bird eats a poisonous butterfly, it will learn to avoid preying on that species again by generalizing its past experience to new perceptual stimuli. In cognitive science, the "universal law of generalization" seeks to explain this ability and states that generalization between stimuli will follow an exponential function of their distance in "psychological space." Here, I challenge existing theoretical explanations for the universal law and offer an alternative account based on the principle of efficient coding. I show that the universal law emerges inevitably from any information processing system (whether biological or artificial) that minimizes the cost of perceptual error subject to constraints on the ability to process or transmit information.
The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory.
Human brains are finite, and thus have bounded capacity. An efficient strategy for a capacity-limited agent is to continuously adapt by dynamically reallocating capacity in a task-dependent manner. Here we study this strategy in the context of visual working memory (VWM). People use their VWM stores to remember visual information over seconds or minutes. However, their memory performances are often errorprone, presumably due to VWM capacity limits. We hypothesize that people attempt to be flexible and robust by strategically reallocating their limited VWM capacity based on two factors: (a) the statistical regularities (e.g., stimulus feature means and variances) of the to-be-remembered items, and (b) the requirements of the task that they are attempting to perform. The latter specifies, for example, which types of errors are costly versus irrelevant for task performance. These hypotheses are formalized within a normative computational modeling framework based on rate-distortion theory, an extension of conventional Bayesian approaches that uses information theory to study rate-limited (or capacity-limited) processes. Using images of plants that are naturalistic and precisely controlled, we carried out two sets of experiments. Experiment 1 found that when a stimulus dimension (the widths of plants' leaves) was assigned a distribution, subjects adapted their VWM performances based on this distribution. Experiment 2 found that when one stimulus dimension (e.g., leaf width) was relevant for distinguishing plant categories but another dimension (leaf angle) was irrelevant, subjects' responses in a memory task became relatively more sensitive to the relevant stimulus dimension. Together, these results illustrate the task-dependent robustness of VWM, thereby highlighting the dependence of memory on learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.