This work continues an ongoing development and use of dielectric barrier discharge (DBD) plasma actuators driven by repetitive nanosecond pulses for high Reynolds number aerodynamic flow control. These actuators are believed to influence the flow via a thermal mechanism which is fundamentally different from the more commonly studied AC-DBD plasmas. Leading edge separation control on an 8-inch chord NACA 0015 airfoil is demonstrated at various post-stall angles of attack (α) for Reynolds numbers (Re) and Mach numbers (M) up to 1.15x10 6 and 0.26 respectively (free stream velocity, U ∞ = 93 m/s). The nanosecond pulse driven DBD can extend the stall angle at low Re by functioning as an active trip. At poststall α, the device generates coherent spanwise vortices that transfer momentum from the freestream to the separated region, thus reattaching the flow. This is observed for all Re and M spanning the speed range of the subsonic tunnel used in this work. The actuator is also integrated into a feedback control system with a stagnation-line-sensing hot film on the airfoil pressure side. A simple on/off type controller that operates based on a threshold of the mean value of the power dissipated by the hot film is developed for this system. A preliminary extremum seeking controller is also investigated for dynamically varying Re. Several challenges typically associated with integration of DBD plasma actuators into a feedback control system have been overcome. The most important of these is the demonstration of control authority at realistic takeoff and landing Re and M. Nomenclature c = model chord, 20.32 cm C L = sectional lift coefficient
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.