The lipid cores from Ignisphaera aggregans, a hyperthermophilic Crenarchaeon recently isolated from New Zealand hot springs, have been profiled by liquid chromatography-tandem mass spectrometry. The distribution revealed includes relatively high proportions of monoalkyl (also known as H-shaped) tetraether cores which have previously been implicated as kingdom-specific biomarkers for the Euryarchaeota. Such high expression of monoalkyl tetraether lipids is unusual in the archaeal domain and may indicate that formation of these components is an adaptive mechanism that allows I. aggregans to regulate membrane behaviour at high temperatures. The observed dialkyl tetraether and monoalkyl tetraether lipid distributions are similar but not fully concordant, showing differences in the average number of incorporated rings. The similarity supports a biosynthetic route to the ring-containing dialkyl and monoalkyl tetraether lipids via a dialkyl tetraether core containing zero rings, or a closely related structural relative, as an intermediate. Currently, however, the precise nature of the biosynthetic route to these lipids cannot be deduced.
[2] Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX 86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX 86 values (reproducibility 63-4 C when translated to temperature) but a large spread in BIT measurements (reproducibility 60.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX 86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX 86 values ranged from 1.3 to 3.0 C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX 86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the ''true'' (i.e., molarbased) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.
Surface sediments from the Changjiang Estuary and adjacent shelf were analyzed using a variety of bulk and molecular techniques, including grain size composition, sediment surface area (SSA), elemental composition (C, N), stable carbon isotopic composition (δ 13 C), n-alkanes, lignin phenols, and glycerol dialkyl glycerol tetraether lipids to obtain a more comprehensive understanding of the sources and fate of sedimentary organic carbon (SOC) in this dynamic region. Bulk N/C ratios of 0.09 to 0.15, δ 13 C of À24.4‰ to À21.1‰, branched/isoprenoid tetraether index of 0 to 0.74, n-alkane content of 0.02 to 0.37 mg g À1 organic carbon (OC), and lignin content (Λ 8 ) of 0.10 to 1.46 mg/100 mg OC and other related molecular indices in these samples indicate a mixed source of marine, soil, and terrestrial plant-derived OC in the study area. A three-end-member mixing model using principal component analysis (PCA) factors as source markers and based on Monte Carlo (MC) simulation was constructed to estimate the relative contributions of OC from different sources. Compared with traditional mixing models, commonly based on a few variables, this newly developed PCA-MC model supported bulk and biomarker data and yielded a higher-resolution OC inputs to different subregions of this system. In particular, the results showed that the average contributions of marine, soil, and terrestrial OC in the study area were 35.3%, 47.0%, and 17.6%, and the highest contribution from each OC source was mainly observed in the shelf, inner estuary, and coastal region, respectively.
Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.